
More Intuitive Bottom-Up Parsing

Ziemowit Laski

Technical Report 99–48

University of California, Irvine
Irvine, CA 92697-3425

laski@ics.uci.edu

http://www.ics.uci.edu/~laski

October 28, 1999
Updated: November 10, 1999

Abstract

Although bottom-up parsing techniques are sufficiently powerful for
most compiler construction tasks, the crafting of suitable grammar speci-
fications can be a difficult and elusive process. The lack of proper abstrac-
tion mechanisms in specification metalanguages themselves often exacer-
bates these difficulties. We present Bertha, a prototype parser generator
designed to address these and other concerns. Bertha is built upon the
notion of ordered context-free grammars, a formal and systematic aug-
mentation of context-free grammars with associativity and precedence
information, that affords it greater expressivity. Furthermore, Bertha’s
input metalanguage allows for hierarchical grammar and symbol defini-
tions, facilitating the use of closures and inherited attributes. Finally,
all grammar specifications are type-safe and properly encapsulated, and
represent a minimal departure from the underlying JavaTM language.

1 Introduction

Context-free grammars (CFGs) are an indispensable part of modern software
engineering practice, since they facilitate formal yet easily understood specifica-
tions of languages. Typically, such specifications are used as inputs to parsing
algorithms. Numerous approaches to context-free language parsing have been
proposed over the years, each constituting a different trade-off between expres-
sivity and computational complexity. For purposes of compiler construction,
one is typically restricted to directional parsing algorithms [GnJ98] employing

1

mailto:laski@ics.uci.edu
http://www.ics.uci.edu/~laski

some fixed (usually single-token) lookahead; these are further subdivided into
top-down and bottom-up algorithms.

The principal advantage of top-down parsers, such as those for LL(1) gram-
mars, lies in their simplicity and appeal to user intuition. Not only is it easy to
understand how a top-down parsing algorithm works, but also quite straightfor-
ward to implement a predictive parser using recursive descent. Top-down pars-
ing techniques can be adequate for handling small languages such as Oberon-2
[MW91], but do not scale well to more complex languages. Restrictions on LL(1)
grammars, such as the lack of left-recursion or distinct left factors [ASU86], make
it very difficult and impractical to craft suitable grammar specifications in many
cases.

Bottom-up parsers are far more versatile in this regard. The general LR(1)
class of grammars [Knu65] is sufficient to describe any deterministic context-
free language, although parsers created from them tend to be quite large. Its
LALR(1) subclass [Der69] remains very expressive, yet achieves a substantial
reduction in parser size. For this reason, LALR(1) parsers (and parser genera-
tors, such as yacc and its derivatives) have found widespread use in the software
engineering community.

Unfortunately, devising specificationss suitable for bottom-up parser gener-
ation can be a daunting task. Programmers have far less intuition to guide
them than in the case of top-down specifications, since it is not at all clear
what LR(1) or LALR(1) grammars should “look like.” Consequently, should a
tool such as yacc reject a grammar specification, the programmer may find it
nearly impossible to find an elegant solution to the problem, opting instead to
duplicate portions of the grammar to achieve disambiguation. This results in
code bloat which adversely impacts system maintainability.

Alternatively, one may mechanically rewrite the problematic grammar into
some normal form (e.g., Chomsky Normal Form, Greibach Normal Form) that is
guaranteed to exist and whose amenability to parsing is known [Woo87, Chr99].
This approach is satisfactory in situations where one is interested solely in con-
structing a language recognizer, i.e., an automaton capable of deciding whether
a given input sentence is part of a language. However, there is much more to
parsing than mere recognition of sentences [PQ96]. For a parser to perform
useful work, semantic actions need to be inserted at appropriate places in the
grammar specification. This placement of semantic actions can be seriously
hampered after the grammar is rewritten since the logical structure of the un-
derlying language is invariably obfuscated in the process.

Rather than rewriting a grammar specification to remove ambiguities, it is of-
ten possible to augment it with additional semantic information [AJU75, Ear75]
so as to guide the parser generation algorithm. For example, the yacc [LMB92]
formalism allows the user to specify associativities and precedences of various
terminal symbols; this information is then used to implicitly (or explicitly, via
the %prec directive) resolve shift/reduce conflicts between productions and to-
kens in the grammar. This approach works fine if the number of conflicts is very
small, but becomes burdensome soon thereafter. It is also an ad hoc solution
in that it lacks a good formal grounding. Few properties can reasonably be

2

inferred about grammars annotated in this manner, save perhaps for the fact
that they can be handled by a deterministic parser.

This paper presents Bertha, a parser generator capable of processing a sub-
set of ordered context-free grammars (OCFGs) [Las99]. Ordered context-free
grammars are an extension of traditional context-free grammars that system-
atically includes associativity and precedence information as part of the core
formalism. They are described in Sect. 2 below. In Sect. 3, we introduce
the Bertha tool itself. In its current form, Bertha handles ordered context-free
grammars belonging to the LALRP(1) subset; LALRP(1) is analogous to, and a
strict superset of, LALR(1) grammars. Section 4 demonstrates how the Bertha
metalanguage may be used to describe various language constructs in a far more
straightforward and intuitive manner than is possible using yacc, even when the
latter is augmented with aforementioned annotations. Finally, Sect. 5 discusses
some possible future improvements to the Bertha tool and concludes the paper.

It is assumed that the reader is familiar with bottom-up parsing techniques
and terminology such as LR(0), LALR(1) and LR(1). A good introduction to
the subject is contained in [App98], while [ASU86] can serve as a comprehensive
reference.

2 An Overview of Ordered Context-Free Gram-
mars

Our primary motivation for creating ordered context-free grammars (OCFGs)
has been to thoroughly and systematically integrate associativity and prece-
dence rules into the context-free grammar formalism. In this paper, we describe
OCFGs only to the extent necessary to gain an understanding of how the Bertha
parser generator works; the reader is referred to [Las99] for a more rigorous
treatment of the topic.

Ordered context-free grammars differ from ordinary CFGs in two respects.
First, all productions in the grammar sharing the same left part (i.e., deriving
the same nonterminal symbol) are arranged into a partial order1 of precedence.
For example, in a language denoting arithmetic expressions, the production
E → E ∗ E will most likely be assigned a higher precedence than E → E + E.

Secondly, each production has a recursion count associated with it. For an
arbitrary production A→ ω, its recursion count rc(A,ω) equals the number of
occurrences of nonterminal A in the sentential form ω. For example, rc(E,E ∗
E) = rc(E,E + E) = 2. Every production must then be assigned a Boolean
associativity vector whose length equals the recursion count. If some A→ ω is
assigned the vector a, where |a| = rc(A,ω), then we may simply write A→ ω : a.
The use of the associativity vector will be explained shortly.

1A partial order is understood here as a reflexive, transitive and antisymmetric relation
≤

P
on the set of productions with the same left part. The relation is partial since some pairs

of productions may not be comparable. Furthermore, productions with differing left parts
must always be incomparable; see [Las99] for an explanation of this.

3

(a) ���+
AA�����E ���*
AA�����E ���E

(b) ���+
AA�����*

AA�����E ���E
���E

(c) ���*
AA�����+

AA�����E ���E
���E

(d) ���*
AA�����E ���+
AA�����E ���E

Figure 1: Computationally valid (a, b) and invalid (c, d) syntax trees for arith-
metic expressions E + E ∗ E and E ∗ E + E

Recall that the precedence and associativity annotations allowed by yacc
are ad hoc in nature, and are of use only when shift-reduce or reduce-reduce
conflicts arise. By contrast, the partial orders and associativity vectors present
in OCFGs serve to control both parsing and generation of sentences. Both
of these objectives are accomplished through a single mechanism — namely, by
requiring that the syntax trees constructed for sentences in the language observe
the invariants of precedence correctness [Aas95].

To illustrate this, let us return to the productions E → E ∗ E and E →
E+E introduced previously. We have assigned a higher precedence to the first
production since multiplication traditionally enjoys precedence over addition.
Given the arithmetic expressions E+E ∗E and E ∗E+E, multiplication must
clearly take place first, which corresponds to syntax trees (a) and (b) in Fig.
1. Note that trees (c) and (d) represent invalid computations given our stated
precedences. These observations lead us to formulate the following invariant for
precedence correct syntax trees:

Rule 1. If two adjacent nodes in an OCFG syntax tree correspond to produc-
tions with the same left part, then the bottom production must have precedence
that is neither lower nor equal than that of the top production.

In other words, the bottom production must either have higher precedence
than the top production, share the same precedence level, or the two productions
must be incomparable. This rule is motivated at length and stated more formally
in [Las99].

Now let us consider the expressions E +E +E and E ∗E ∗E. The possible
syntax syntax trees corresponding to these expressions are shown in Fig. 2.
According to Rule 1, none of them are computationally valid since the bottom
production has the same precedence as the top production in each case. Clearly,
this is not what we intended, since repeated application of multiplication and
addition in arithmetic expressions is obviously allowed. On the other hand, if
we assume that both addition and multiplication must be evaluated from left
to right,2 syntax trees (c) and (d) truly cannot be valid since they impose an

2Such an assumption may be a convenient one to make for a programming language,
especially if constituent subexpressions are allowed to produce side-effects.

4

(a) ���+
AA�����+

AA�����E ���E
���E

(b) ���*
AA�����*

AA�����E ���E
���E

(c) ���+
AA�����E ���+
AA�����E ���E

(d) ���*
AA�����E ���*
AA�����E ���E

Figure 2: Computationally valid (a, b) and invalid (c, d) syntax trees for ex-
pressions E +E +E and E ∗E ∗E, assuming the left-associativity of addition
and multiplication

opposite order of evaluation. What we would like, therefore, is to be able to
include syntax trees (a) and (b) only. As it turns out, this may be accomplished
quite easily by assigning an appropriate associativity vector to each production
and by introducing an additional rule when constructing precedence correct
syntax trees from OCFGs:

Rule 2. Two adjacent nodes in an OCFG syntax tree may correspond to pro-
ductions with equal precedence (and hence with the same left part) only if the
appropriate bit in the top production’s associativity vector is set.

To make our example work, we set the associativity vectors for both pro-
ductions to 10, obtaining E → E + E : 10 and E → E ∗ E : 10. The leftmost
bit in both vectors is set, meaning — per Rule 2 — that the leftmost occur-
rence of E on the right side may be expanded using a production with the same
precedence as the production to which it belongs. This is exactly what trees (a)
and (b) in Fig. 2 depict. On the other hand, since the rightmost bit is cleared,
the rightmost instance of E may not be expanded with a production of equal
precedence, and we must resort to productions allowed by Rule 1 instead.

In the foregoing example, the associativity vector 10 roughly corresponded to
a %left declaration in yacc. We could also have made either production right-
associative (%right) or non-associative (%nonassoc) by setting its associativity
vector to 01 or 00, respectively. Finally, if the order of evaluation did not
matter — a distinct possibility given that addition and multiplication commute
— we could have declared the productions fully associative by using the vector
11. Marking a production fully associative, an option not explicitly available in
metalanguages such as yacc,3 allows more sentential forms to be generated from
the grammar. Conversely, it affords the parser more leeway in resolving conflicts;
this is related to the idea of semantically irrelevant ambiguity as discussed in
[Tho94].

Precedence as used in OCFGs differs from the annotations present in yacc in
that it is applied to entire productions rather than to individual tokens. Thus,
productions with different precedence can easily share a terminal symbol (e.g.,

3Unless otherwise marked, productions are treated by yacc as fully associative.

5

E → −E, E → E − E).4 The associativity semantics allowed by OCFGs are
more fine-grained, since they allow one to control each occurrence of the left part
symbol in the right part, rather than specifying associativity of productions as
a whole.

3 The Bertha Parser Generator

The current version of the Bertha tool is designed to handle the LALRP(1)
subset [Las99] of ordered context-free grammars. These are analogous to the
LALR(1) subset of CFGs in that states containing items differing only in their
lookahead sets are merged [ASU86]. (Similarly, the LRP(1) subset is analogous
to LR(1) in that such items are not merged.) But parsers constructed from
OCFGs differ from their CFG counterparts in the very notion of parser states
they employ. In the latter, states are merely sets of items; in the former, they
are partial orders of items, induced by the precedences of the productions them-
selves. All of these issues are discussed in detail in [Las99], but are not pivotal
to the understanding of Bertha from an end-user perspective.

Treating parser states as partial orders of items implies that a parser con-
structed from an ordered context-free grammar may contain states differing only
in the ordering of the constituent items rather than in the items themselves. We
shall demonstrate such a grammar in Sect. 4. At the same time, any existing
context-free grammar may be viewed as a special case of an ordered context-free
grammar in which all productions are completely unordered and fully associa-
tive. For these reasons, LALRP(1) represents a strictly more powerful formalism
than LALR(1).

In its input syntax and semantics, Bertha draws heavily on the JavaTM pro-
gramming language [GJS96]. The consequences of this design choice are twofold.
First, Bertha input specifications can be easily transformed into bottom-up
parsers in the form of Java programs. Secondly, the specifications themselves
can take advantage of many features of the Java language such as type-safety,
encapsulation and inner classes. The last feature is especially useful as it allows
us to easily implement nested grammars and symbol closures.

Figure 3 shows an example Bertha grammar for a simple calculator. After
processing, this grammar will become a self-contained application (note the
presence of the main entry point) that may be compiled and executed on any
Java platform. All symbols in the specification will be transformed into classes,
and all reduce(...) productions into methods. The start symbol of the
grammar will further be made a subclass of a special run-time class from which
it will inherit the table-driven bottom-up parser engine.

The prec(...) and assoc(...) constructs are used to establish the re-
quired partial order among productions and to assign appropriate associativ-
ity vectors to each. Associativity vectors may be either specified explicitly as
Boolean strings (e.g., "10") or by using the keywords left, right, full or

4This can be achieved in yacc by employing the %prec directive in conjunction with an
additional placeholder token; Sect. 4 contains a (rather verbose) example of this.

6

// E.bertha
import zll.bertha2.run.ParseError;
start symbol E {

// the program processes what is on the command line
public static void main(String args[]) throws ParseError {

E calc = new E(new java.io.StringReader(ArgString(args)));
calc.Parse(); System.out.println("The result is " + calc.val);

}
int val = 0; // attribute for nonterminal E
symbol num { // nested terminal symbol

reduce((’0’-’9’)+ str) {
val = Integer.decode(str);

}
}
// back to the scope of E
prec(incomparable) {

reduce(num) { /* no need to do more! */ }
prec(decreasing) {

prec(equal) {
assoc("0") reduce("-", E s) { val = - s.val; }
assoc(none) reduce("+", E s) { val = + s.val; }

}
assoc("01") reduce(E base, "^", E exponent) {

val = (int)Math.pow(base.val, exponent.val);
}
prec(equal) {

assoc(left) reduce(E op1, "*", E op2) { val = op1.val * op2.val; }
assoc(none) reduce(E op1, "/", E op2) { val = op1.val / op2.val; }

}
prec(equal) {

assoc("10") reduce(E op1, "+", E op2) { val = op1.val + op2.val; }
assoc("00") reduce(E op1, "-", E op2) { val = op1.val - op2.val; }

}
assoc(right) reduce(E op1, ":", E op2, "?", E op3) {

val = (op1.val != 0? op2val: op3val);
}

}
assoc(full) reduce("(", E op, ")") { val = op.val; }

}
}

Figure 3: A sample Bertha grammar specification

7

none. The assoc(...) modifier may be omitted from a production, which is
semantically equivalent to specifying assoc(full). As can be seen in Fig. 3,
the prec(...) scopes may be nested in order to achieve the desired partial
order. In our example, addition and subtraction share a precedence level and
have a jointly lower precedence than do multiplication and division. (Note that
it is possible for two productions with equal precedence to have different asso-
ciativities.) Alternatively, a symbol may use no prec(...) declarations at all,
which is equivalent to a single prec(incomparable) declaration encompassing
all the productions for that symbol. If the entire grammar does not contain any
assoc(...) or prec(...) constructs, it is an ordinary context-free grammar.

Note that Bertha relies on the Java inner class construct to support nested
symbols. In Fig. 3, the symbol num is nested inside of the start symbol E.
All symbols in a grammar must, in fact, be nested within their corresponding
start symbols. This is not mere lexical nesting but rather a closure that binds
each instance of the nested symbol to that of an enclosing symbol. Thus, the
semantic action defined for symbol num can access field val of start symbol
E. Symbols can be nested arbitrarily deeply, as long as they conform to Java
scoping rules.

In addition to nested symbols, Bertha also supports nested grammars. The
idea behind nested grammars is to allow the user to specify stream content that
may occur between the tokens of an enclosing grammar. Figure 4 depicts a
fragment of a hypothetical grammar for the Java language that delegates the
handling of comments to an inner grammar. In turn, the comments grammar
uses yet another grammar, called whitespace, to consume any non-printing
characters from the input. When Bertha processes file java_grammar.bertha,
it will produce a file java_grammar.java containing three separate sets of parse
tables, one for each grammar in question.

The operational semantics for a parse employing grammars nested in this
fashion is as follows. Whenever the parser for an enclosing grammar (for exam-
ple, java_grammar) is about to read the next token from the input stream,5 it
first invokes a parse of its immediate inner grammar (in our case, comments) to
extract and parse any sentences recognizable by the inner grammar. Similarly,
before reading in a token, the comments grammar instructs the whitespace
grammar to consume any sentences composed of non-printing characters. For
this scheme to work properly, the programmer must ensure that inner grammars
do not consume tokens actually “belonging to” outer grammars.

Inner grammars not only facilitate a separation of concerns between the
handling of a core language and its comments, but also allow for a much more
thorough handling of the latter. As Fig. 4 illustrates, delegating Java com-
ment processing to a separate grammar enables us to easily extract and process
embedded javadoc [GJS96] documentation. We could also handle nested com-
ments found in languages such as Pascal and Oberon-2 [Wir96], since we have a
pushdown automaton at our disposal. Lexical analyzers like lex, on the other
hand, construct only finite-state automata (FSA). In order to recognize recur-

5This should not be confused with shifting tokens onto the parse stack, which occurs later.

8

// java_grammar.bertha
:

start symbol java_grammar {
:

// nested grammar for comments
start symbol comments {

// yet another grammar, just for whitespace, which will extract
// non-printing characters:
// -- within Java comments; and
// -- in between Java tokens (identifier, operators, etc.).
start symbol whitespace {

reduce((’ ’|’\t’|’\n’)*) { ... }
}
reduce("//", #* / "\n", "\n") { ... }
reduce("/*", #* / "*/", "*/") { ... }
reduce("/**", javadoc, "*/") { ... }
symbol javadoc {

reduce(comment_lines, comment_entries) { ... }
reduce(comment_entries) { ... }
reduce() { ... }

}
symbol comment_lines {

String comment;
reduce(#* / ("*/" | "@") str) { comment = str; }

}
symbol comment_entries {

reduce(comment_entries, comment_entry) { ... }
reduce(comment_entry) { ... }

}
symbol comment_entry {

reduce("@author", comment_lines) { ... }
reduce("@since", comment_lines) { ... }
reduce("@see", comment_lines) { ... }

:
}
:

}
}
// begin Java grammar
reduce(package_information, class_definitions) { ... }
:

}

Figure 4: Specifying the phrase structure of Java comments using Bertha nested
grammars

9

sive structures of any kind, the programmer is required to explicitly maintain
several FSA start (%s) states [LMB92].

All the declared symbols in the Bertha metalanguage are nonterminals; to
specify the lexical structure of tokens, the programmer must rely on anonymous
regular expression literals. Figure 4 contains several examples of such literals.
For the most part, the regular expression notation adopted by Bertha is similar
to those used with lex or on UNIX platforms, and should be self-explanatory.
The # symbol is similar to the lex period (.) but will match all characters,
including ’\n’. The / (forward slash) symbol is a lookahead operator with the
same semantics as in lex: The patterns on both sides of / must match the
input, but only the left pattern will actually be consumed.

4 Comparing Bertha and yacc

Figures 3 and 4 demonstrate some of the advantages of the Bertha metalanguage
over those of more conventional parser generators. In this section, we shall
present additional examples which will hopefully illustrate this further.

First, consider the subset of the Java language which deals with expressions.
As do its C and C++ forebears, Java relies on a well-defined hierarchy of opera-
tor precedence along with associativity characteristics for each precedence level.
The designers of the Java language provided a pure (i.e., unadorned with yacc-
style annotations) LALR(1) grammar for it [GJS96], presumably to serve as a
formal reference for the concrete syntax. While this specification is sufficient
for reference purposes, using it for purposes of parsing can be quite awkward.

In Fig. 5, we have attempted to rewrite portions of the Java grammar
dealing with expressions — with a few simplifications — using the precedence
and associativity annotations provided by yacc. This definition is considerably
shorter (and contains fewer nonterminals) than the original, making semantic
instrumentation much easier. Unfortunately, the code in Fig. 5 is far from
intuitive. Even though precedence clearly applies to productions, it must be
specified with respect to tokens. In fact, several tokens such as TYPECAST must
be “invented” just to assure a proper ordering; a complete Java parser written
this way is sure to contain many more of them. In addition, a separate lexical
analyzer must be provided to actually read the tokens from an input stream.

Compare this with Fig. 6, which depicts the same Java language fragment
described using Bertha metalanguage syntax. Structurally, this definition is
quite similar to the one from Fig. 5, and one might expect both of them to yield
the same bottom-up parser. Recall, however, that precedence and associativity
are used by yacc only to resolve shift/reduce conflicts, whereas in Bertha they
form an integral part of the grammar formalism and are consulted at all times to
prevent the construction of computationally incorrect parse trees. Consequently,
the yacc-generated parser will accept derivations, such as those shown in Fig.
7, that are clearly not desirable from the viewpoint of computation order.

Another advantage to using Bertha lies in the notational convenience its
metalanguage provides. One no longer needs an elaborate arrangement of tokens

10

// JavaExpr.y
%right ASSIGN_OP
%right ’:’ ’?’ %left OR_OR %left AND_AND %left ’|’
%left ’^’ %left ’&’ %left EQUAL_OP %left UNEQUAL_OP
%left SHIFT_OP %left INFIX_ADD %left MUL_OP
%nonassoc PARENTH %nonassoc TYPECAST
%right ’~’ %right ’!’ %right ADD_OP %nonassoc INCR_OP
%left ’.’ ’[’ ’(’ %nonassoc NUM
%%
JavaExpr:

NUM
| JavaExpr ’(’ ’)’ | JavaExpr ’[’ ’]’ | JavaExpr ’.’ JavaExpr
| JavaExpr INCR_OP
| INCR_OP JavaExpr
| ADD_OP JavaExpr
| ’!’ JavaExpr
| ’~’ JavaExpr
| ’(’ JavaExpr ’)’ JavaExpr %prec TYPECAST
| ’(’ JavaExpr ’)’ %prec PARENTH
| JavaExpr MUL_OP JavaExpr
| JavaExpr ADD_OP JavaExpr %prec INFIX_ADD
| JavaExpr SHIFT_OP JavaExpr
| JavaExpr UNEQUAL_OP JavaExpr
| JavaExpr EQUAL_OP JavaExpr
| JavaExpr ’&’ JavaExpr
| JavaExpr ’^’ JavaExpr
| JavaExpr ’|’ JavaExpr
| JavaExpr AND_AND JavaExpr
| JavaExpr OR_OR JavaExpr
| JavaExpr ’?’ JavaExpr ’:’ JavaExpr
| JavaExpr ASSIGN_OP JavaExpr
;

Figure 5: A deterministic (but non-LALR(1)) yacc specification for Java ex-
pressions

11

// JavaExpr.bertha
start symbol JavaExpr {

prec(decreasing) {
reduce("#" i) { }
prec(equal) {

assoc(left) reduce(JavaExpr, "(", ")") { }
assoc(left) reduce(JavaExpr, "[", "]") { }
assoc(left) reduce(JavaExpr l, ".", JavaExpr r) { }

}
prec(equal) {

assoc(none) reduce(JavaExpr, "++" | "--" op) { }
assoc(none) reduce("++" | "--" op, JavaExpr) { }

}
reduce("+" | "-" op, JavaExpr) { }
assoc("1") reduce("!", JavaExpr) { }
assoc("1") reduce("~", JavaExpr) { }
reduce("(", JavaExpr, ")", JavaExpr) { }
reduce("(", JavaExpr, ")") { } // this resolves the s/r conflict!
assoc(left) reduce(JavaExpr, "*" | "/" | "%" op, JavaExpr) { }
assoc(left) reduce(JavaExpr, "+" | "-" op, JavaExpr) { }
assoc(left) reduce(JavaExpr, "<<" | ">>" | ">>>" op,

JavaExpr) { }
assoc(left) reduce(JavaExpr,

"<" | "<=" | ">" | ">=" | "instanceof" op, JavaExpr) { }
assoc(left) reduce(JavaExpr, "==" | "!=" op, JavaExpr) { }
assoc(left) reduce(JavaExpr, "&", JavaExpr) { }
assoc(left) reduce(JavaExpr, "^", JavaExpr) { }
assoc(left) reduce(JavaExpr, "|", JavaExpr) { }
assoc(left) reduce(JavaExpr, "&&", JavaExpr) { }
assoc(left) reduce(JavaExpr, "||", JavaExpr) { }
assoc("011") reduce(JavaExpr, "?", JavaExpr, ":", JavaExpr) { }
assoc(right) reduce(JavaExpr, "=" | "*=" | "/=" | "%=" | "+=" |

"-=" | "<<=" | ">>="| ">>>=" | "&=" | "^=" | "|=" op, JavaExpr) { }
} // prec(decreasing)

}

Figure 6: Specifying Java expressions in Bertha

(a) ���()
�����+
AA�����# ���#

(b) ���!
AA���*
AA�����# ���#

Figure 7: Examples of parse trees constructed with the yacc grammar in Fig.
5 that would be disallowed by the Bertha grammar in Fig. 6

12

// NotLALR1.bertha
start symbol NotLALR1 {

prec(decreasing) {
reduce("a", A, "d") { }
reduce("a", B, "e") { }

}
prec(decreasing) {

reduce("b", B, "d") { }
reduce("b", A, "e") { }

}
symbol A {

reduce("c") { }
}
symbol B {

reduce("c") { }
}

}

Figure 8: Disambiguating a non-LALR(1) grammar through use of precedence

to specify precedence, nor does one need to worry about the lexical analysis of
tokens. The notation exploits features of the underlying Java language in order
to establish an intuitive isomorphism between nonterminal symbols and their
types. A Java class provides the type for each symbol, whereas the name
of this class identifies the symbol itself within the OCFG framework. Parser
generators such as yacc treat the typing of symbols as a separate (and entirely
optional) concern.

Thus far, we have illustrated Bertha’s use of precedence in restricting the
construction of computationally incorrect derivation trees from input strings.
Conversely, it is equally noteworthy that there exist valid Bertha grammar
specifications that cannot be analogously handled by yacc, regardless of the
annotations provided. Recall that the states in a pushdown automaton con-
structed from an ordered context-free grammar are partial orders of items, which
potentially allows for more parser states to exist.

Figure 8 depicts a grammar which is known not to be in LALR(1) [ASU86].
When compiled using yacc, it yields a parser with a reduce/reduce conflict.
The reductions in question involve the productions A → c and B → c, both
of them sharing the same lookahead set: {d, e}. In order to eliminate this
conflict, the grammar would need to be rewritten. When Bertha constructs the
parser, however, the conflict will not occur. Rather that having a single state
containing items with A→ c and B → c, the parser will contain two such states,
differing only in the ordering of the items. With yacc, one could not specify an
ordering among these two productions since they do not share a left part (and,
at any rate, one would need two distinct orderings). With Bertha, this ordering
is established transitively from the ordering of items in respective predecessor
states; [Las99] explains this computation at length.

Note that the additional state obtained by establishing a partial order among
the production could in most cases probably be obtained by enhancing an or-
dinary LALR(1) parser generator with a state-splitting algorithm, such as the
one described in [Pag77, Spe88]. However, in the latter approach, the state

13

splitting is triggered only when an inadequate state is found and requires rather
expensive backtracking through previously constructed parser states.

5 Conclusions and Future Work

The Bertha parser generator presented in this paper offers a twofold advan-
tage over more traditional tools such as yacc. First, its input metalanguage is
directly tied to the underlying Java language and is thus able to offer encapsu-
lation, abstraction and type-safety to the user.6 Second, adopting the semantics
of ordered context-free grammars for the input metalanguage allows for a more
intuitive and consistent treatment of production associativity and precedence
that occur so frequently in language constructs. As was demonstrated above,
LALRP(1) parsers also have strictly more disambiguation capability than LA-
LR(1) parsers.

There are still areas in which the Bertha tool could be improved. For one,
it may be beneficial to augment the current parser construction algorithm with
a state-splitting operation [Pag77, Spe88] or the insertion of conflict-resolving
contextual predicates [Tar82] into inadequate states. Of course, the present al-
gorithm already introduces state splits in many places, as was illustrated in
the last section. Nevertheless, there may exist remaining shift/reduce or re-
duce/reduce conflicts that cannot be disambiguated using production ordering
alone, but that could be resolved using these other approaches.

Conversely, it is possible that the current LALRP(1) parser construction
algorithm constructs additional states that are in fact redundant, i.e., recom-
bining them would introduce no additional conflicts. Since it is advantageous
to keep the number of states (and hence parse table size) to a minimum, adding
a state-merging “clean-up” phase to our algorithm should be beneficial even if
the number of candidate states is quite small.

Last, but certainly not least, is the issue of parser completeness. At present,
Bertha shares the drawback with yacc of not being able to indicate to the pro-
grammer whether the constructed parser is complete, i.e., whether it always
terminates and accepts all valid inputs. There exists a category of nondeter-
ministic languages [ASU86] for which unambiguous LALR(1) grammars exist
— for example, the language L = {anbn ∪ anb2n |n ≥ 1}. A bottom-up parser
for such a language will be constructed without apparent problems, but will rec-
ognize only its subset [ST88]. Although it is undecidable whether an arbitrary
context-free language is nondeterministic [HU79], an algorithm that deals with
a subset of such languages has been proposed [Tho94] and its usefulness should
be investigated.

6Of course, this reliance on Java could also be viewed as a limitation.

14

Acknowledgements

The author would like to express his gratitude to Peter Fröhlich, Joachim Feise,
Christian Stork, Roy Fielding, Jules Winfield and Vincent Vega for their valu-
able comments and suggested improvements to this paper.

References

[Aas95] Annika Aasa. Precedences in specifications and implementations of
programming languages. Theoretical Computer Science, 142(1):3–26,
1 May 1995.

[AJU75] Alfred V. Aho, Stephen C. Johnson, and Jeffrey D. Ullman. Determin-
istic parsing of ambiguous grammars. Communications of the ACM,
15(8):441–452, August 1975.

[App98] Andrew W. Appel. Modern Compiler Implementation in Java. Cam-
bridge University Press, Cambridge, United Kingdom, 1998.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Addison-Wesley, Reading, MA, March
1986.

[Chr99] Thomas W. Christopher. User manual for TCLLk: A strong LL(k)
parser generator and parser. Technical Report 1999-3-#1-TC, Tools
of Computing LLC, Evanston, IL, 12 March 1999.

[Der69] Frank L. Deremer. Practical Translators for LR(k) Languages. PhD
thesis, Dept. of Electrical Engineering, MIT, Cambridge, MA, 1969.

[Ear75] Jay Earley. Ambiguity and precedence in syntax description. Acta
Informatica, 4(2):183–192, 1975.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The JavaTM Language Spec-
ification. Addison-Wesley, Reading, MA, 1996. Available at http://
www.javasoft.com/docs/books/jls/html/index.html.

[GnJ98] Dick Grune and Ceriel J. Jacobs. Parsing Techniques: A Prac-
tical Guide. Printout by the Authors, Vrije Universiteit, Ams-
terdam, the Netherlands, September 1998. Available at http://
www.cs.vu.nl/~dick/PTAPG.html.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Series in Com-
puter Science. Addison-Wesley Publishing Co., 1979.

[Knu65] Donald E. Knuth. On the translation of languages from left to right.
Information and Control, 8(6):607–639, December 1965.

15

[Las99] Ziemowit Laski. Ordered context-free grammars. Technical Re-
port 99–18, Dept. of Information and Computer Science, Univer-
sity of California, Irvine, 26 April 1999. Available at http://
caesar.ics.uci.edu/laski/PrecedenceParsing.html.

[LMB92] John Levine, Tony Mason, and Doug Brown. Lex & Yacc. O’Reilly
& Associates, Inc., Sebastopol, CA, second edition, October 1992.

[MW91] Hanspeter Mössenböck and Niklaus Wirth. The programming
language Oberon-2. Structured Programming, 12(4):179–195,
1991. Available at http://www.ssw.uni-linz.ac.at/Research/
Papers/Moe91a.html.

[Pag77] David Pager. A practical general method for constructing LR(k)
parsers. Acta Informatica, 7:249–268, 1977.

[PQ96] Terence J. Parr and Russell W. Quong. LL and LR translators need
k > 1 lookahead. ACM SIGPLAN Notices, 31(2):27–34, February
1996.

[Spe88] David Spector. Efficient full LR(1) parser generation. ACM SIGPLAN
Notices, 23(12):143–150, December 1988.

[ST88] Eljas Soisalon-Soininen and Jorma Tarhio. Looping LR parsers. In-
formation Processing Letters, 26(5):251–253, 11 January 1988.

[Tar82] Jorma Tarhio. LR parsing of some ambiguous grammars. Information
Processing Letters, 14(3):101–103, 16 May 1982.

[Tho94] Mikkel Thorup. Controlled grammatic ambiguity. ACM Transactions
on Programming Languages and Systems, 16(3):1024–1050, May 1994.

[Wir96] Niklaus Wirth. Compiler Construction. Addison-Wesley, 1996.

[Woo87] Derick S. Wood. Theory of Computation. Harper & Row, New York,
NY, first edition, 1987.

16

	1 Introduction
	2 An Overview of Ordered Context-Free Grammars
	3 The Bertha Parser Generator
	4 Comparing Bertha and yacc
	5 Conclusions and Future Work

