
'

&

$

%

Ordered Context-Free Grammars

Ziemowit Laski

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

laski@ics.uci.edu

April 30, 1999 (Updated: June 16, 1999)

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Overview

• Parser Construction Blues
• Precedence in Context-Free Grammars
• Ordered Context-Free Grammars
• Derivation Properties of OCFGs
• Parsing: BerthaTM to the Rescue
• Possible Future Work

April 30, 1999 (Updated: June 16, 1999) 2

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Parser Construction Blues (1)

• In directional parsing, we are restricted to deterministic
context-free languages (DCFLs)

• At first, things seem pretty rosy:
– All DCFLs have an LR(1) grammar [Knu65]
– Many languages are in LL(1), although...
– For any finite k, there exists a DCFL that is not LL(k)

• But:
– Finding an LR(1) grammar is very difficult, and its

existence undecidable; things are even hairier for LALR(1)
(of yacc fame);

– LL(k) ⊂ LR(1)

April 30, 1999 (Updated: June 16, 1999) 3

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Parser Construction Blues (2)

• Even if is possible to find a suitable LL(k) or LALR(1)
grammar for our DCFL,
– “Language translation is a harder and more important

problem than language recognition.” [PQ96]
– Semantic bindings (i.e., associating grammar rules with

actions) become very tricky
– Beneficial to leave the structure of the grammar intact, even

at the expense of larger lookahead (k > 1)
• Our claim: Precedence is an alternative/complementary

disambiguation tool to k > 1

April 30, 1999 (Updated: June 16, 1999) 4

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Precedence in Context-Free Grammars (1)

• Enforcing Precedence Through Grammar Structure:
E : E ’-’ T E : T E’ ;

| T ; E’: ’-’ T E’

T : T ’*’ F | /* NULL */ ;

| F ; T : F T’ ;

F : ’-’ num T’: ’*’ F T’

| num ; | /* NULL */ ;

F : ’-’ num

| num ;

– LR(k) version – Numerous unit rules
– LL(k) version – Additional symbols

April 30, 1999 (Updated: June 16, 1999) 5

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Precedence in Context-Free Grammars (2)

• “Deterministic Parsing of Ambiguous Grammars” in yacc:
%left ’-’

%left ’*’

%right UMINUS

:

E : E ’-’ E

| E ’*’ E

| ’-’ E %prec UMINUS

| num ;

– Precedence assigned to tokens (hence the UMINUS)
– “Ambiguous context-free grammar together with

disambiguating rules” [AJU75]

April 30, 1999 (Updated: June 16, 1999) 6

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Precedence in Context-Free Grammars (3)

• Precedence/associativity assigned to productions
E : ’-’ E

| E ’*’ E %left (10)

| E ’-’ E %left (10)

| num ;

– Precedence implicit in production order
– Associativity and precedence are viewed as an integral part

of the grammar

April 30, 1999 (Updated: June 16, 1999) 7

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Ordered Context-Free Grammars (1)

• Based on ordinary CFGs
• G = (VN , VT , S, P), where

(1) VN , VT and S are as in a CFG, and V =def VN ∪ VT
(2) P : VN 7−→ R, where R ⊆ P(≤

P
, V ∗ 7−→ N), enumerates the

productions in G; specifically,
(a) P maps each nonterminal A to a strict partial order of

possible right sides 〈ω, a〉 ∈ R
(b) Each right side, in turn, maps the right part ω to a

Boolean associativity vector a ∈ {0, 1}[0, rc(A,ω)], where
(c) The recursion count rc(A,ω) denotes the number of

occurrences of nonterminal A in the sentential form ω

April 30, 1999 (Updated: June 16, 1999) 8

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Ordered Context-Free Grammars (2)

• If p = 〈A,R〉 ∈ P and 〈ω, a〉 ∈ R, then we may instead write
p = [A−→ω : a] ∈ P .
• If a = 0rc(A,ω), then p is non-associative; if a = 1rc(A,ω)−10,

left-associative, if a = 01rc(A,ω)−1, right-associative
– A generalized definition of associativity
– However, left-, right- full- and non-associativity suffice for

directional parsing
• Let G be an OCFG; we may then define a core CFG,
G′ = CORE(G), obtained from G by discarding all precedence
and associativity information

• The precedence relation is undefined for productions with
different left parts

April 30, 1999 (Updated: June 16, 1999) 9

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Derivation Properties of OCFGs (1)

• An OCFG derivation S
∗=⇒
P
γ is a CFG derivation S=⇒ γ that

additionally respects the following invariant:
– If two productions with the same left part A ∈ VN are used

in immediate succession to construct some path in the
derivation tree, then either:

(1) The production being used first has lower precedence, or
(2) The two productions have incomparable precedence, or
(3) They have equal precedence, in which case the

associativity of the parent production [A−→ω : a] must
be obeyed:

(a) The i-th occurrence of A in ω may be expanded via the
child production only if a[i] = 1.

(b) Productions with higher precedence may expand any A
in ω.

April 30, 1999 (Updated: June 16, 1999) 10

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Derivation Properties of OCFGs (2)

• An OCFG derivation/parse tree is “computationally correct”
wrt a depth-first (bottom-up) traversal

• Given some word w ∈ V ∗T in a DCFL,
– An OCFG G will allow at most as many distinct parse trees

for w as CORE(G), hence reducing/eliminating ambiguity
– G may also invalidate all parse trees for w, rendering it

syntactically incorrect
• In general, L(G) ⊆ L(CORE(G))

April 30, 1999 (Updated: June 16, 1999) 11

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Derivation Properties of OCFGs (3)

• Given a partial order ≤
P

among productions in G with the
same left part, we can induce a partial order ≤

rm P
among

entire OCFG derivations S ∗=⇒
rm P

γ in G

– Must choose consistent method of expanding nonterminals
in intermediate sentential forms

– Righttmost derivation seems the logical choice
∗ Corresponds to a bottom-up, left-to-right scan of the

input
∗ Can be nicely mapped to closure computations within

parser states, and to state transitions in a deterministic
pushdown automaton (DPDA)

April 30, 1999 (Updated: June 16, 1999) 12

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Derivation Properties of OCFGs (4)

• Given two rightmost derivations S ∗=⇒
rm P

γ1 and S
∗=⇒

rm P
γ2,

– Their ordering is the same as the ordering of the
productions used first, unless

– The same production begins both derivations, in which case
the succeeding productions are compared in a recursive
manner

• Allows us to establish an ordering among items in each DPDA
state, and use it to resolve many shift-reduce and
reduce-reduce conflicts

• On the other hand, this may increase the total number of
states – given a set of items, more than one distinct partial
order may be possible

April 30, 1999 (Updated: June 16, 1999) 13

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Parsing: BerthaTM to the Rescue (1)

• A JavaTM-based parser generator (syntax, semantics,
implementation)
• Handles LALRP(1) grammars, which are OCFG analogues of

LALR(1)
start symbol E { int val;

reduce("-", E expr) { val = - expr.val; }

assoc(left) reduce(E expr1, "*", E expr2) { ... }

assoc(left) reduce(E expr1, "-", E expr2) { ... }

reduce(num i) { ... }

symbol num {

:

}

}

April 30, 1999 (Updated: June 16, 1999) 14

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Parsing: BerthaTM to the Rescue (2)

• Terminal symbols are defined along with non-terminals, use
scan() instead of reduce(...)

• Nested start symbols are allowed, useful for processing
whitespace and comments (e.g., javadoc)

• All symbols may have attributes, as they are mere Java
classes; the generated parser is type-safe

April 30, 1999 (Updated: June 16, 1999) 15

Ziemowit Laski Ordered Context-Free Grammars'

&

$

%

Possible Future Work

• Investigate the formal conditions under which the LRP(k) and
LALRP(k) parser construction algorithms create additional
states, beyond those created by the LR(k)/LALR(k) algorithms
– Empirical observation: they practically never occur

• Apply Pager’s [Pag77] or Spector’s [Spe88] compaction
algorithms to extend Bertha to handle LRP(1) grammars

• It is possible to nesting symbols within one another, so...
– Within the scope of the outer symbol, it is possible to use

inherited attributes
– May lead to some precedence-enhanced variant of left-corner

(LC(k)) parsing, a method which combines LL(k) and
LR(k) techniques

April 30, 1999 (Updated: June 16, 1999) 16

