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Abstract

Context-free grammars (CFGs) provide an intuitive and powerful for-
malism for describing the syntactic structure of parsable input streams.
Unfortunately, existing online parsing algorithms for such streams admit
only a subset of possible CFG descriptions. Theoretically, it is possible
to parse any deterministic context-free language (CFL) in a single pass,
as long as the grammar describing the CFL belongs to the LR(k), k ≥ 1
subset of CFGs. However, obtaining a suitable LR(k) description for a lan-
guage is not an easy task — especially when k = 1 — and usually entails
an increase in complexity of the rewritten CFG. More importantly, such
rewriting inevitably obfuscates the syntactic structure of the language and
complicates the placement of semantic bindings. Instead of searching for
yet another subclass of CFGs amenable to parsing, we propose to augment
the definition of the CFG itself by allowing associativity and precedence to
be specified for each production in the grammar. We call the resulting for-
malism an ordered context-free grammar (OCFG). Compared to ordinary
context-free grammars, OCFGs can often reduce the number of distinct
derivation trees for a given sentence in a CFL; those parse trees that re-
main can be arranged into a strict partial order. These characteristics
make it very easy to craft unambiguous descriptions for context-free lan-
guages using OCFGs. At the same time, parsers constructed from OCFGs
rely on deterministic pushdown automata and are structurally identical to
their CFG counterparts. For the well-known LR(k) and LALR(k) subsets
of CFGs, we define analogous subsets of OCFGs, called LRP(k) and LA-
LRP(k), and illustrate how these may be used for defining programming
language constructs much more succinctly. Finally, we briefly describe
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the BerthaTM parser generator designed to construct bottom-up parsers
from LALRP(1) grammar specifications.

1 Introduction and Motivation

Parsing plays an important role in software development and deployment. Tra-
ditionally employed as translator front-ends, parsers have also found use in pro-
cessing streaming content such as markup information [BPSM98] and mobile
code [FK97] as it is received over a network. In addition, parsing algorithms
can be modified to facilitate the output of syntactically structured data, in a pro-
cess sometimes referred to as “anti-parsing.” [Bea95]. In all of these situations,
context-free grammars (CFGs) represent the formalism of choice for describing
the language to be processed. CFGs foster a separation of concerns (and hier-
archical decomposition) by requiring that each construct and syntactic subset
be defined apart from the others. Just as importantly, they lend themselves to
straightforward and efficient parsing algorithms.

Although numerous deterministic algorithms for CFGs have been developed
[GJ98], only online algorithms [IK97], performing a single left-to-right scan of
the input stream are suitable for the kinds of applications mentioned above.
Such algorithms must be able to commence the processing of input before all of
it is known. Moreover, their execution time should be linear in the length of the
input stream, and their space requirements should be constant or asymptotic,
since no upper bound on stream length can be guaranteed to exist in the general
case.

Parsing techniques possessing the foregoing characteristics do exist, but im-
pose restrictions on the subsets of CFGs which may be used; the LR(k) class
[Knu65, Ear70] is the most general of such parsable subsets.1 Context-free lan-
guages (CFLs) are in LR(k) only if they can be unambiguously recognized using
a shift-reduce parser employing at most k tokens of lookahead; CFLs that do
not have this property for any finite k are called nondeterministic [AU72] since
they are incapable of being parsed by any deterministic pushdown automaton
(DPDA). Deterministic context-free languages (DCFLs) hence form the broad-
est subset of CFLs amenable to directional parsing, although it is generally
undecidable whether a given CFL is also a DCFL [HU79]. Every DCFL is guar-
anteed to have an LR(1) grammar; this, however, is largely of theoretical signifi-
cance. As expressive as the LR(1) grammars are, the construction of parsers for
them can be quite costly in terms of both space and time.2 The LALR(1) subset
[DP82] of LR(1) significantly reduces the state space requirements associated
with canonical LR(1) parsing, and entails only a minimal loss of expressivity.

1LR-Regular (LRR) grammars proposed in [CC73] are even more expressive, but require
a reverse scan of the input prior to parsing. LAR(m) parsers [BS90] require auxiliary finite
state automata to process lookahead conflicts and may have execution time that is quadratic
in the length of the input.

2An algorithm proposed in [Pag77] improves on this by combining LR(1) parser states
whenever possible. An even more efficient algorithm presented in [Spe88] accomplishes the
same task by splitting inadequate LR(0) states.
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The construction of LALR(1) parsers can also be significantly faster than for
unrestricted LR(1) [BL89]. Not surprisingly, LALR(1) parser generators such
as yacc and bison [LMB92] are by far the most commonly used tools, as they
offer a sensible compromise between space efficiency, run-time performance and
expressive power.

Although an LR(1) grammar is guaranteed to exist for every DCFL, finding
it is not always an easy task. Constructing an LALR(1) grammar for a DCFL
will generally be even more difficult, if not impossible. More often than not, a
CFG submitted to an LR(1) or LALR(1) parser generator will be rejected as
ambiguous.3 The ambiguities in the grammar will take the form of shift-reduce
and/or reduce-reduce conflicts in the DPDA which is to perform the parse. This
does not necessarily mean that the corresponding CFL is nondeterministic (or
inherently ambiguous); it may still be possible for the parser to recognize the
language if the ambiguities in the grammar can be removed.

One technique aimed at removing ambiguities from LR(k) CFGs involves
rewriting the grammar into a form that is not ambiguous but still describes the
same CFL. Several canonical forms of CFGs amenable to DPDA parsing, such
as Chomsky Normal Form and Greibach Normal Form,4 have been proposed
and shown to exist for every CFL [Sal73, Woo87]. In some cases, an automated
transformation of CFGs to these forms is possible. However, rewriting a CFG in
this way can adversely impact its readability and maintainability. For one, the
unambiguous CFG will almost always be more complex than the original, am-
biguous one [Gru71], containing semantically useless single productions [ASU86]
that simply enforce associativity and precedence. More importantly, the new
CFG will no longer reflect the logical or conceptual structure of the language
being defined. Together, these effects complicate the placement of semantic
actions with respect to language constructs. Furthermore, should the original
grammar already contain semantic bindings, it may be extremely difficult or
impossible to transform those bindings as well [PQ96].5

Instead of rewriting the grammar, one may also attempt to resolve existing
shift-reduce and reduce-reduce conflicts by increasing the length k of the looka-
head string from its typical value of one. Doing so is, in fact, strongly advocated
by [PQ96]. Still, increasing lookahead in order to eliminate a few conflicts may
not be justifiable in terms of the added space and time requirements. This is es-
pecially true if the ambiguities in question are not resolvable for any reasonable
value of k.

The alternative approach, and the one explored in this paper, relies on
3For purposes of this paper, ambiguity shall be defined with respect to the specific class of

grammars — LR(1), LALR(1), and so on — for which a parser is sought. Ambiguity in the
general sense (i.e., the existence of more than one parse tree for some sentence) for a CFG is
undecidable; see Section 2.

4Greibach Normal Form can even be used in conjunction with a top-down LL(k) parser,
as long as the value of k is sufficiently large.

5Semantics can also be associated with specialized action symbols, or nullable nonterminals,
in the grammar. Action symbols better lend themselves to automated transformations than
traditional semantic bindings [Chr99]. Unfortunately, this approach is not very expressive and
requires that a predictive parser, such as LL(1), be used.
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supplementary precedence and associativity information, rather than grammar
rewriting, to resolve parsing ambiguities. Per se, the use of precedence in gram-
mar specifications is not new, and forms the basis of an entire family of operator
grammars [Flo63, AU72, MP72]. Unfortunately, operator grammars have ex-
pressive power far weaker than that of LR(k) [AU72], and usually require that
the precedence relation be defined via a separate matrix whose construction
is less than intuitive [Col70]. On the other hand, the yacc and bison parser
generators [LMB92] as well as the newer CUP parser generator for Java [Hud99]
allow ad hoc precedence and associativity information to be provided in addition
to the formal context-free grammar.6 This information is used to resolve any
conflicts arising during the construction of the LALR(1) DPDA [AJU75], effec-
tively enlarging the set of grammar descriptions handled by these tools. In all of
the foregoing approaches, however, both associativity and precedence are bound
only to individual tokens. This is not satisfactory, as any token may have prece-
dence, associativity and semantics that are dependent on its context of use. For
example, the minus sign functions as both a unary and binary operator in most
programming languages. The approach presented in this paper circumvents this
problem by allowing associativity and precedence attributes to be assigned to
entire productions rather than individual symbols. This additional information
is easily embedded within a grammar specification, and need not be provided in
a separate data structure.7 It may be used to control derivation sequences and
(perhaps more importantly) resolve parser conflicts. The resulting formalism
shall be henceforth referred to as an ordered context-free grammar (OCFG).

For purposes of this paper, we assume that the reader is familiar with the
basic properties of context-free grammars, and with the inner workings of LA-
LR(1) parser construction tools such as yacc or bison. An accessible intro-
ductory treatment of the foregoing is provided in [App98], while [ASU86] and
[AU72] serve as excellent reference sources. The notation used generally follows
established formal language nomenclature [AU72, BL89]; unless otherwise indi-
cated, upper-case Latin symbols are used to represent nonterminals, lower-case
Greek symbols represent sentential forms (sequences of terminals and nontermi-
nals), and lower-case Latin symbols represent sentences (sequences of terminals
only).

Section 2 provides a definition of both a CFG and an OCFG as well the
properties of valid derivations for the two. In terms of expressive power, OCFGs
equal ordinary CFGs in that they can enumerate exactly the set of all context-
free languages (CFLs). The usefulness of OCFGs lies in the fact that they
can actually reduce the number of possible derivation trees for a sentence in a
CFL. This property has the effect of reducing, or even completely eliminating,
the degree of ambiguity in a grammar for a context-free language. Even if the
ambiguity is not removed, it is usually possible to induce a strict partial order
among the derivations that remain, and then choose the one that comes “first.”
The particulars of generating sentences from OCFGs naturally lead into a dis-

6A similar approach is proposed in [Ear75].
7The Syntax Definition Formalism (SDF) [HHKR89] also allows productions to be ordered,

albeit separately from the actual context-free grammar.

4



cussion of automata suitable for parsing such sentences. To this end, Section 3
conceptually describes the construction algorithm for an abstract nondetermin-
isticc pushdown automaton (NPDA), with k ≥ 0 token lookahead, from a CFG
or an OCFG. Each state of this automaton can be described as a set of so-called
CFG items or, alternatively, as a partial order of OCFG items. As it turns out,
our NPDA formulation provides a convenient mechanism for defining various
subsets of deterministic context-free languages. In Section 4, we rely on CFG
items to formally characterize the well-known LR(k) and LALR(k) subsets of
CFGs; analogously, OCFG items become the basis for the definitions of LRP(k)
and LALRP(k) subclasses of OCFGs. Parser construction algorithms for all four
of these deterministic subsets are described in Section 5. As may be expected,
parser construction for LRP(k) and LALRP(k) is a mere generalization of cor-
responding LR(k) and LALR(k) algorithms, incorporating the additional the
precedence and associativity information contained in OCFGs. The BerthaTM

parser generator capable of constructing JavaTM-based LALRP(1) parsers from
type-safe OCFG specifications is presented in Section 6. Section 7 concludes
the paper.

2 Grammar Definitions and Derivation Proper-
ties

We begin our discussion by formalizing the notion of a context-free grammar and
of a derivation based on such a grammar. Without loss of generality, we shall
henceforth assume that the start symbol S never occurs on the right-hand side
of any production; this will merely obviate the necessity of defining a separate
augmented grammar when bottom-up parsing is discussed later on.

Definition 1. A context-free grammar (CFG) is a quadruple G = (VN , VT ,
S, P ), where

(1) VN is the set of nonterminals in the grammar,
(2) VT is the set of terminals, such that

(a) VN ∩ VT = ∅, and
(b) V =def VN ∪ VT constitutes the alphabet of the grammar;

(3) S ∈ VN is the start symbol of the grammar; and
(4) P ⊆ VN × V ∗ is the set of productions in the grammar, so that

(a) If p = 〈A,ω〉 ∈ P , we may instead write p = [A−→ω] ∈ P , and
(b) Nonterminal A ∈ VN forms the left part, and sentential form ω ∈ V ∗

the right part, of production p.

Definition 2. Let G = (VN , VT , S, P ) be a CFG per Definition 1. Then

(1) =⇒ is a relation on sentential forms over V and represents a single CFG
derivation step; α1 =⇒α2 if and only if

(a) α1 = γ1Aγ2,
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(b) α2 = γ1ωγ2, and
(c) [A−→ω] ∈ P ;

(2) +=⇒ is the transitive closure of =⇒ , and
(3) ∗=⇒ is the transitive-reflexive closure of =⇒ .

We further define L(G) =def {w ∈ V ∗
T |S

+=⇒w} as the language, or set of all
sentences, generated by G.

Definitions 1 and 2 are not ground-breaking in any respect; they are provided
solely as a notational foundation for the formal definition of an ordered context-
free grammar (OCFG) that follows. When generating the sentences in L(G),
we may choose to rely solely on leftmost derivation steps (=⇒

lm
), where only

the leftmost nonterminal in each sentential form is expanded. Analogously, we
may use rightmost derivation steps (=⇒

rm
); as it turns out, a bottom-up parse of

a sentence reconstructs, in reverse order, a rightmost derivation +=⇒
rm

for that
sentence. These strategies are interchangeable since for every sentential form
γ ∈ V ∗ such that S ∗=⇒ γ, it must also be true that S ∗=⇒

lm
γ and S

∗=⇒
rm

γ. This
interchangeability of derivations is a key property of context-free grammars; as
we shall see later on, it will hold for OCFGs as well.

Definition 3. An ordered context-free grammar (OCFG) is a quad-ruple G =
(VN , VT , S, P ), where

(1) VN , VT , V and S are as per Definition 1; and
(2) P : VN 7−→ R, where R ⊆ P(≤

P
, V ∗ 7−→ {0, 1}∗), enumerates the produc-

tions in G; specifically,

(a) Function P maps every left part A ∈ VN of a production to a partial
order8 R of possible right parts ω ∈ V ∗ for A,

(b) The recursion count rc(A,ω) denotes the number of occurrences of
nonterminal A in the sentential form ω,

(c) Each right part ω is, in turn, mapped to a Boolean associativity vector
a : {0, 1}rc(A,ω), 9 and

(d) If p = 〈A,R〉 ∈ P and 〈ω, a〉 ∈ R, then we may instead write p =
[A−→ω : a] ∈ P .

Associativity vectors generalize the notion of associativity used in operator
grammars and in the handling of ambiguous CFGs by tools such as yacc. If
there exists a p = [A−→ω : a] such that rc(A,ω) ≥ 1, then the contents of
the vector a indicate which of the occurrences of A in ω may actually be ex-
panded during a directly recursive application of p. By setting a to appropriate

8The terminology for set orderings sometimes varies; our definition of a partial order is
adopted from [GH93] and requires that the ≤

P
relation on R be transitive, reflexive and

antisymmetric. A strict partial order (<P ) and an equivalence relation (=P ) are also induced
on R. Whereas it would also be possible to structure R as a linear (i.e., total) order where
any two productions in R would be comparable, doing so may unduly restrict the generative
power of OCFGs; see Definition 5 below.

9If rc(A, ω) = 0, then the associativity vector is empty: a = Λ, |Λ| = 0.
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values it is possible to control, in a very general way, the allowed and forbid-
den associativities of p. For example, if a = 1rc(A,ω), then p is said to be fully
associative, whereas if a = 0rc(A,ω) then it is non-associative. If rc(A,ω) ≥ 2,
left- and right-associativity may be established by setting a to 1rc(A,ω)−10 and
01rc(A,ω)−1, respectively.10

Since only a partial ordering is required of OCFG productions sharing the
same left part A ∈ VN (and only those), it is perfectly valid for these productions
to remain unordered (i.e., pairwise incomparable). Similarly, the associativity
restrictions allowed by the OCFG formalism may be avoided simply by making
each and every p ∈ P fully associative. Hence, OCFGs may be viewed as mere
generalizations of context-free grammars, and all valid CFGs as special cases
of ordered context-free grammars. Conversely, it is occasionally convenient to
“reduce” an OCFG to a CFG, even if doing so entails a loss of semantic infor-
mation. We shall call the resulting grammar a core CFG ; it can be constructed
simply by discarding the precedence and associativity information contained in
the corresponding OCFG.

Definition 4. Let G = (VN , VT , S, P ) be an OCFG per Definition 3. Then
there also exists a CFG G′ = CORE(G) =def (V ′

N , V
′
T , S

′, P ′), called the core
grammar of G, where

(1) V ′
N = VN , V ′

T = VT and S′ = S; and
(2) [A−→ω] ∈ P ′ if and only if [A−→ω : a] ∈ P for some associativity vector

a : {0, 1}rc(A,ω).

In keeping with established set ordering notation, we have formalized the
production ordering R in terms of the ≤

P
relation; in practice, it is usually more

convenient to specify such orderings using>
P

and =
P
. Definition 3 partitions the

production set P = {PA |A ∈ VN} into subsets, each containing productions
for a given nonterminal symbol A. Note that the ≤

P
relation between two

productions p1 and p2 may hold only if both of p1 and p2 belong to the same
subset PA. Furthermore, p1 = p2 always implies that p1 =

P
p2, although the

converse need not be true. On the other hand, if p1 and p2 reside in different
subsets PA and PB , where B 6= A ∧ PA ∩ PB = ∅, then they must always be
incomparable: p1 ‖

P
p2.

Whereas one could allow ≤
P

to hold as well when A 6= B, doing so would
introduce undesirable side-effects (in addition to being semantically dubious).
One of the nice properties of CFGs — and of CFG derivations — is that the
nonterminals found in a given sentential form can be expanded in any order.
Because of this, for every derivation S

+=⇒w of a sentence w, there is also
guaranteed to exist a leftmost derivation S

+=⇒
lm

w and a rightmost derivation
S

+=⇒
rm

w such that all three derivations generate the same parse tree for w. By
confining the ≤

P
relation to productions with identical left parts, we assure

that this derivation interchangeability holds for ordered context-free grammars
as well.

10Trivially, for rc(A, ω) = 1, left- and right-associativity is equivalent to full associativity;
when rc(A, ω) = 0, production associativity is undefined.
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Permitting ≤
P

to hold among any two productions in G would bring the
definition of an OCFG closer to that of an ordered grammar, previously studied
by researchers [Fri68, Fri69, Sal73]. Ordered grammars allow production order-
ing regardless without regard to their left parts, which has the effect of allowing
the generation of some context-sensitive languages, while (often inadvertently)
limiting the extent to which context-free constructs can be enumerated.11 The
same holds true with regard to so-called programmed grammars [Ros69]. In a
programmed grammar, each production p is associated with two sets Psuccess

and Pfailure of other productions. Only productions in Psuccess may follow p in
any derivation. If p cannot be applied, then only productions in Pfailure may
be used instead. Indexed grammars [Aho68, HU79], yet another generalization
of CFGs, allow special indices i ∈ I, where I ∩ V = ∅, to be appended to non-
terminal symbols. The indices are created through special productions of the
form A−→Bi. When B is subsequently expanded with an ordinary produc-
tion B−→ω, the indices propagate to all nonterminals in ω so as to preserve
information about their origin. Conversely, an index immediately following a
nonterminal may be consumed by applying productions of the form Bi−→ω.
Such productions are clearly not context-free, and are context-sensitive only if
ω = φi for some φ ∈ (V ∪ I)+. As it turns out, indexed languages as a whole
form a proper subset of context-sensitive languages.

Having provided and motivated the definition for an OCFG, we now turn
to the problem of constructing a derivation sequence for every sentence (or
sentential form) enumerable by such a grammar. Recall that in the case of
“ordinary” CFG derivations (see Definition 2), a nonterminal A ∈ VN within
some sentential form ω could be expanded using any of the existing productions
for A. Constructing an OCFG derivation, however, is a bit more complicated.
Given some sentence w ∈ V ∗

T , it no longer suffices to present any parse tree
whose frontier (i.e., the left-to-right sequence of leaf nodes) spells out w; such a
parse tree must also observe the precedence relations — and associativities —
of the productions corresponding to its inner nodes.

As was mentioned previously, ordered context-free grammars have the po-
tential of reducing the number of admissible derivation trees for sentences in
a language L. It may be tempting to follow this premise to its conclusion
and establish derivation semantics guaranteeing that only a single parse tree
exists for each distinct sentence in L. Using such an approach would guar-
antee that every OCFG G is capable of enumerating exactly the same set of
context-free languages that a corresponding CFG G′ = CORE(G) enumerates
(i.e., L = L(G) = L(G′)), since a derivation of a given sentence (or sentential
form) would be rejected only when another, valid one exists. Unfortunately,
establishing the existence of several distinct derivations for a sentential form is
equivalent to determining the (non-)ambiguity of the entire grammar, which is
well-known to be undecidable in the general case [Woo87]. In principle, decid-
ability could be achieved via a bottom-up parser construction algorithm, were

11Using a linear order instead of partial order in an ordered grammar would further restrict
its expressive power; see [Sal73].
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we able to restrict our field of inquiry to rightmost derivations of DCFLs. As
was already mentioned, however, it also cannot generally be established whether
a given CFL is deterministic.

A more fundamental reason for not using associativity and precedence as
mere disambiguation aids is that, per se, they are not intended to eliminate
ambiguity. The principal motivation behind creating the OCFG formalism has
been to facilitate the generation of “computationally correct” derivation trees,
and the reconstruction of such trees from sentences through parsing.12 The
requirements for achieving this computational correctness are outlined in Defi-
nition 5 below. Those derivations that induce an incorrect order of computation
(say, addition before multiplication) will be rejected as invalid. To be sure, this
process will tend to reduce, and sometimes even eliminate, parse tree ambi-
guities. In certain situations, all existing CFG derivation trees for a sentence
may be invalidated, rendering the sentence syntactically incorrect (see below).
Still, all of these should be viewed as secondary effects rather than a primary
characteristic of ordered context-free grammars.

Hence, we shall not concern ourselves with ambiguity when constructing
OCFG derivations. Instead, we focus on constructing a parse tree which, during
a depth-first traversal, leads to computation of semantic actions in an order
that is consistent with the associativity and precedence provided. A formal
characterization of this process is outlined in Definition 5 below. As in a CFG,
each non-leaf node of the parse tree corresponds to a production in the grammar.
If any two such internal nodes are adjacent (i.e., connected by an edge), then the
top node should have precedence that is no higher than that of the bottom node.
This will hold true when the top node has lower precedence than the bottom
node, the same precedence level as the bottom node, or if the two nodes hold
different nonterminal symbols and are hence incomparable. If the precedences
of the two nodes are equal, then the associativity characteristics of the top node
determine if and how the bottom node may be in fact be attached to it. All of
the foregoing conditions are formalized below.

Definition 5. Let G = (VN , VT , S, P ) be an OCFG per Definition 3. Then

(1) =⇒
P

is a relation on sentential forms over V and represents a single OCFG
derivation step; α1 =⇒

P
α2 if and only if

(a) α1 = γ1φ1Aφ2γ2,
(b) α2 = γ1φ1ωφ2γ2,
(c) p1 = [A−→ω : a1] ∈ P , and
(d) if α0 =⇒

P
α1, where

i. α0 = γ1Aγ2,
ii. p0 = [A−→φ1Aφ2 : a0] ∈ P ,

then one of the following holds:
i. p1 ‖

P
p0,

12[Aas95] has introduced the somewhat analogous notion of “precedence correct” syntax
trees, applicable to operator grammars.
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ii. p1>P
p0, or

iii. p1 =
P
p0 ∧ a0[rc(A,φ1) + 1] = 1.13

(2) +=⇒
P

is the transitive closure of =⇒
P

, and
(3) ∗=⇒

P
is the transitive-reflexive closure of =⇒

P
.

Analogously to CFGs, we define L(G) =def {w ∈ V ∗
T |S

+=⇒
P
w} as the language

generated by OCFG G.

An important insight contained in [Aas95] is that languages described by
grammars should properly be viewed as collections of syntax trees and not
merely of sentences; this is certainly true for languages enumerated by ordered
context-free grammars defined above. We establish the well-formedness of each
OCFG syntax tree by verifying the validity of every path from the root node to a
frontier node of the tree. For each path, we establish its correctness inductively
using the individual OCFG expansions, beginning with the initial expansion
of the start symbol S. If the last step of a derivation involves the expansion
of some A ∈ VN in a sentential form. then an appropriate production p1 =
[A−→ω : a1] ∈ P for A must exist as in ordinary CFG derivations. For OCFG
derivations, we must additionally determine whether the nonterminal A was
itself created from yet another instance of A through the use of some recursive
production p0 = [A−→φ1Aφ2 : a0] ∈ P . If so, then p0 must have precedence
that is no higher than that of p1; the boundary condition p0 =

P
p1 indicates

that we are dealing with two productions of equal precedence — or possibly
a single production p = p0 = p1 — being applied twice in succession. In this
situation, applying p1 after p0 will be valid as long as it is used to expand some
i-th occurrence of A in φ1Aφ2 for which a0[i] = 1; any other expansions will
violate the associativity properties of p0.

Note that if two distinct productions p0 6= p1 share a precedence level
(p0 =

P
p1), this does not require them to share associativity characteristics; if

p0 and p1 correspond to adjacent nodes in the derivation tree, only the associa-
tivity vector of the parent node is used to determine the construction’s validity.
This separation of associativity and precedence is quite different from the se-
mantics embedded in yacc and bison, which require that operators with equal
precedence also have identical associativities. When we discuss OCFG parser
construction in Section 5, we will see that any shift-reduce conflicts that arise
can still be meaningfully resolved.

Having provided formal definitions of ordered context-free grammars and
valid OCFG derivations, we now present a concrete (and hopefully illuminat-
ing) example. Figure 1 shows an ordered context-free grammar for a subset of
programming language expressions. The unary operators “-” and “+” are jointly
assigned the highest precedence and made non-associative to forbid nested con-
structions such as “- - E”. These are followed by the right-associative exponenti-
ation operator “↑” and the multiplicative and additive binary operators. (Note
the non-associativity of “-” and “/”.) The ternary “?:” operator, similar to

13a[i], i ≥ 1, denotes the i-th bit of the associativity vector a.
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[E−→num : Λ]

[E−→ “-”E : 0]=P [E−→ “+”E : 0] >P [E−→E“↑”E : 01]

>P [E−→E“*”E : 10]=P [E−→E“/”E : 00]

>P [E−→E“+”E : 10] =P [E−→E“-”E : 00]

>P [E−→E“?”E“:”E : 011]

[E−→ “(”E“)” : 1]

Figure 1: An example OCFG for a subset of programming language expressions;
productions are comparable only where indicated

the one found in C, C++ and Java, is made right-associative and assigned the
lowest precedence.

Our grammar example includes a production representing the “()” group-
ing operator. An appropriate choice of precedence for this production is not
immediately obvious. Following deeply-rooted habits, we may initially attempt
to assign the highest possible precedence to the parentheses, since expressions
contained within them are normally evaluated first. Because the “()” opera-
tor is defined via a recursive production, however, any expression immediately
contained inside the parentheses will need to have precedence that is at least
as high (see Definition 5), thereby precluding us from actually using any of the
other operators. If we choose the lowest precedence for “()”, the other operators
will be able to appear inside the parentheses, but the parentheses themselves
will only be valid as the outermost operator (i.e., the root node of the entire
derivation tree). The sole correct solution in this case is to render the produc-
tion for “()” incomparable to all the others by grouping it in a separate linear
order. Had we provided another grouping operator, say “[]”, in our grammar,
it too would have had to be incomparable to all the others (including “()”). In
the same vein, the retrieval of an expression value from a terminal symbol num
is unrelated to the precedence assigned the various operators in our grammar.

When we compare Definition 5 with Definition 2, we see that the set of al-
lowable OCFG derivations is always a subset (though not necessarily a proper
subset) of corresponding core CFG derivations. The difference of these two sets
contains derivations which, while valid for ordinary context-free grammars, do
not observe the appropriate order of computation imposed by the additional as-
sociativity and precedence of OCFG productions. As was mentioned previously,
such a reduction in the number of OCFG derivations cannot and does not guar-
antee derivation unambiguity for any particular sentence. On the other hand,
it may be possible for an OCFG to exclude all derivations (and hence deriva-
tion trees) of a sentence successfully generated by the corresponding core CFG.
The expressive power of any given OCFG is therefore never greater than that
of the its core CFG, and may sometimes be smaller: L(G) ⊆ L(CORE(G)).14

14However, since nothing ever prevents us from constructing an OCFG G such that L(G) =
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This state of affairs should not be viewed as problematic; should some sen-
tence w generated by a CFG G cease to be derivable under an OCFG G′ where
G = CORE(G′), it simply means that w cannot be constructed without vio-
lating the associativity and precedence constraints imposed by G′. Therefore,
whenever w is encountered on the input stream, it should properly be rejected
as syntactically incorrect.

Thus, removing computationally incorrect parse trees has the effect of reduc-
ing — but not necessarily eliminating — derivation ambiguities in an OCFG.
This fact potentially complicates our key objective, namely, the construction
of deterministic parsers for ordered context-free grammars. Shift-reduce and
reduce-reduce conflicts that hindered the construction of CFG parsers may, in
the worst case, persist for OCFGs. Fortunately, since all productions with
the same left-hand side in an OCFG must be arranged into a partial order,
we may use this fact to construct a canonical ordering of the OCFG deriva-
tions themselves.15 Before we do so, we need to introduce some additional
notation. Whereas S ∗=⇒

P
ω denotes the existence of at least one distinct de-

rivation for a sentential form ω, we shall use D = [[A ∗=⇒
rm P

ω]] to refer to a
particular leftmost derivation for ω, in this case labeled D, from some non-
terminal A.16 We may write [[A ∗=⇒

rm P
ω1]] = [[A ∗=⇒

rm P
ω2]] (which necessarily implies

that [[A ∗=⇒
rm P

ω1]] =P
[[A ∗=⇒

rm P
ω2]]) if and only if ω1 = ω2 and the two derivations

construct the same parse tree.

Definition 6. Let G = (VN , VT , S, P ) be an OCFG per Definition 3. If
there exist two valid rightmost derivations D = [[A=⇒

rm P
α1

∗=⇒
rm P

ω1]] and E =
[[A=⇒

rm P
α2

∗=⇒
rm P

ω2]] for A ∈ VN and yielding, respectively, ω1 ∈ V ∗ and ω2 ∈ V ∗,
then one can establish a canonical partial order ≤

rm P
between D and E accord-

ing to the following rules:

(1) If [A−→α1 : a1]<P
[A−→α2 : a2], then D<

rm P
E; otherwise,

(2) If [A−→α1 : a1] =P
[A−→α2 : a2], then

(a) If ω1 = α1 ∨ ω2 = α2, then D=
rm P

E;17 otherwise,
(b) If B ∈ VN is the rightmost nonterminal in both α1 and α2, then

i. If [[B ∗=⇒
rm P

ψ1]] =P
[[B ∗=⇒

rm P
ψ2]], then D=

rm P
E; otherwise,

ii. If [[B ∗=⇒
rm P

ψ1]]<rm P
[[B ∗=⇒

rm P
ψ2]], then D<

rm P
E.

(3) In all other situations, the derivations are incomparable: D ‖
rm P

E.

If D and E are leftmost derivations, a partial order ≤
lm P

may be induced among
them in a similar way.

The partial order among OCFG derivations D and E is induced directly
from precedences of constituent productions; naturally, both D and E must
L(CORE(G)), OCFGs are capable of enumerating all context-free languages similarly to
CFGs.

15[Tho94] proposes that a prioritization of semantically equivalent syntax subtrees be estab-
lished, and that the minimal element of each such equivalence class be chosen when resolving
ambiguities.

16In the most general case, of course, we have A = S.
17Additionally, if ω1 = α1 ∧ ω2 = α2, then the two derivations are identical: D = E.
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represent valid rightmost derivations per Definition 5 to begin with. Note that
it is necessary to choose some consistent method which nonterminals are ex-
panded in each sentential form; in the absence of such a method, it can easily
be seen that inducing an ordering of OCFG derivations would be impossible.
We chose rightmost derivation for our method since it intuitively corresponds
to a left-to-right, bottom-up parse of the input, and because it easily and con-
veniently maps into item closure computations within each DPDA state, as well
as to state transitions. Note that if ω1 = ω2, then Definition 6 establishes a
unique ordering among two derivations of the same sentential form, hence al-
lowing us to consistently pick the one that is “first”. The OCFG derivation
ordering will enable us to resolve many reduce-reduce conflicts arising during
parser construction. Even if ω1 6= ω2, the ordering between D and E is still
useful because it aids us in eliminating some of the shift-reduce conflicts. All
parser conflict resolution techniques shall be discussed in Section 5.

3 Non-Deterministic Pushdown Automata as
Hypothetical Parsers

Theoretically, every context-free language (CFL) can be parsed with a non-
deterministic pushdown automaton (NPDA) [Woo87]. In practice, only deter-
ministic pushdown automata (DPDA) for directional, online algorithms are con-
structed; 18 their power of recognition is restricted to deterministic context-free
languages (DCFLs). The LR(k) and LALR(k) classes of languages, as well as
the LRP(k) and LALRP(k) classes we introduce in Section 4, are all subsets
of DCFLs. It turns out, however, that all of these deterministic classes can
be defined much more conveniently as subsets of all CFGs or OCFGs, simply
by imposing various restrictions on a special NPDA which we shall presently
define.

One of the main tenets of bottom-up parsing is that every viable prefix
γ ∈ V ∗, appearing on the stack at some point during the parse, corresponds to
a state in the pushdown automaton [ASU86]. As the number of distinct viable
prefixes is potentially infinite, every state of the DPDA necessarily corresponds
to an entire equivalence class of viable prefixes. On the other hand, each state of
our NPDA corresponds to exactly one viable prefix. In defining the NPDA, we
rely on the existence of rightmost derivations =⇒

rm
in the underlying grammar

G; the definition of the automaton itself shall proceed by construction. Initially,
we shall also assume (without loss of generality) that G is an ordinary CFG. For
OCFGs, the ordering of derivations corresponding to an NDPA state matters
as well, as we will see shortly.

The state space of an NPDA (or of any other automaton) may be viewed as a
digraph where the nodes correspond to states and the edges to state transitions.
An NPDA state associated with the viable prefix γ ∈ V ∗ found on its parse

18On-the-fly generation of NPDA states by a deterministic online algorithm, although pos-
sible, is very inefficient.
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stack shall henceforth simply be called “state γ.” Conceptually, viable prefix
γ encapsulates all of the shift and reduce operations which have taken place
before state γ was reached; shift and/or reduce actions taking place at state
γ will yield transitions to other NPDA states. The start state of the NPDA
is assigned the empty viable prefix ε since no operations have taken place yet.
The remaining states are obtained by computing the closure of possible state
transitions as dictated by grammar G.

First, we take any node α already in the digraph (initially, this will be node ε,
where |ε| = 0). The existence of node α implies that S ∗=⇒

rm
αz for some remaining

input z ∈ Z ⊆ V ∗
T . Next, we compute the set Sα = FIRST1(Z) ⊆ VT of tokens

which may be retrieved from the input in state α. For each such token s ∈ Sα,
create a node in the digraph labeled αs and insert a directed edge from α to αs.
Then, we determine the set Rα = {[A−→ω] ∈ P |S ∗=⇒

rm
βAz=⇒βωz = αz} of

productions which may be used to reduce the contents α of the parse stack. For
each such production, we must determine the appropriate value of β in the fore-
going expression, and add a directed edge between the current node α and node
labeled βA, which should already exist. Finally, we repeat the previous steps
for all newly created nodes; for cycle-free grammars, this process eventually
terminates. Should the grammar contain any direct or indirect recursion, how-
ever, the number of viable prefixes — and hence distinct NPDA states — will
become infinite. This is not problematic, since this infinite NPDA state space is
implicitly folded into a finite DPDA state space during the parser construction
process.

In the foregoing, we have used the shift and reduce operations allowable
in state α of our NDPA solely to compute transitions to other states. For the
purposes of parsing, it is also necessary to encode these permissible operations in
each state itself. This is most commonly done using a set of so-called items; each
item contains some production p = [A−→ω] ∈ P and a position, η • µ | ηµ = ω
indicating which leftmost portion η of ω has already been reconstructed from
the input. Additionally, each item stores a lookahead w which may follow ηµ
on the input stream. Using items allows us to characterize each α of our NPDA
independently of other states, as the following definition shows.

Definition 7. Let G be a CFG per Definition 1. Then Iα corresponds to state
α in the NPDA constructed for G, and is a set of CFG items in that state. For
each such CFG item 〈p, d, w〉 ∈ Iα,

(1) p = [A−→µη] ∈ P ;
(2) d = |µ|;
(3) S ∗=⇒

rm
δAy=⇒

rm
δµηw; and

(4) α = δµ.

Each CFG item may alternately be written as [A−→µ • η |w] ∈ Iα.

One of the consequences of using an NPDA, visible in Definition 7, is that
each and every CFG item in an NPDA state α is associated with exactly one
rightmost CFG derivation S

∗=⇒
rm

δAy=⇒
rm

αηw, with ηw remaining to be read
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from the input stream.19 We make use of this property when constructing
NPDA states for an OCFG. Since OCFG derivations form a partial order (see
Definition 6), so can OCFG items residing in a given NPDA state.

Definition 8. Let G be an OCFG per Definition 3. Then P Iα corresponds to
state α in the NPDA constructed for G, and is a partial order of OCFG items
in that state. For each such OCFG item 〈p, d, w〉 ∈ P Iα,

(1) p = [A−→µη : a] ∈ P ;
(2) d = |µ|;
(3) S ∗=⇒

rm P
δAy=⇒

rm P
δµηw; and

(4) α = δµ.

Each OCFG item may alternately be written as [A−→µ • η : a |w] ∈ P Iα. The
partial order ≤

rm P
of the OCFG items in NPDA state α is exactly the same as

that of their corresponding righmost OCFG derivations, identified in (3).

The rationale for establishing an ordering among the OCFG items is that it
allows us to resolve some of the action conflicts arising during the construction
of a deterministic parser.20 Should a conflict involving two distinct items in
a state arise which cannot be resolved using lookahead alone, we may resolve
it “in favor” of the OCFG item with the higher precedence, as determined
by its accompanying OCFG derivation. If the conflict involves one and the
same OCFG item, the associativity of the underlying production can be used
to choose either a shift or a reduce action. Since only a partial order exists
among OCFG items, the foregoing conflict resolution mechanism may not always
succeed. Nevertheless, this still represents a marked improvement over ordinary
CFGs, where such resolutions are never possible.

It is important to note that the foregoing definitions allow for unlimited
lookahead on the input stream. In practical parsing scenarios, lookahead is
typically restricted to some fixed length k ≥ 0. Hence, it is sensible to also
impose this restriction on CFG and OCFG items that make up states in our
hypothetical NPDA.

Definition 9. Let Iα be a set of CFG items in NPDA state α per Definition
7. Then Ik

α, where k ≥ 0, is a set of CFG items with k-token lookahead in state
α, so that 〈p, d,FIRSTk(w)〉 ∈ Ik

α for every 〈p, d, w〉 ∈ Iα.

Definition 10. Let P Iα be a partial order of OCFG items in NPDA state α per
Definition 8. Then P Ik

α, where k ≥ 0, is a strict partial order of OCFG items
with k-token lookahead in state α, so that 〈p, d,FIRSTk(w)〉 ∈ P Ik

α for every
〈p, d, w〉 ∈ P Iα, with the ordering preserved: 〈p1, d1,FIRSTk(w1)〉≤rm P

〈p2, d2,
FIRSTk(w2)〉 if and only if 〈p1, d1, w1〉≤rm P

〈p2, d2, w2〉.
19The unique derivation property will no longer hold, of course, once the NPDA states are

folded into DPDA states.
20In our NPDA, conflicting actions are simply pursued simultaneously, in a manner typical

for nondeterministic automata.
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When only a finite number k of initial tokens is stored for each lookahead
string, it is possible for two previously distinct sets of CFG or OCFG items to
become equal: Ik

α = Ik
β or P Ik

α = P Ik
β , for α 6= β. As we shall see in Section

4 below, the different parsable subsets of CFGs and OCFGs differ precisely as
to when these equalities hold. Note that for P Ik

α = P Ik
β to hold, the ordering

of the constituent items, as well as the items themselves (possibly modulo the
lookahead sets), must be identical.

It is possible to construct the theoretical automaton just described for any
CFG or OCFG. Shift and reduce operations allowed at a state α, as indicated
by the sets Sα and Rα, may all be attempted simultaneously if need be; there
is no notion of a conflict in a nondeterministic automaton. More than one
of these attempts (or none at all) may succeed, possibly leading to multiple
derivation trees being constructed for the same input sentence. In fact, all
possible syntax trees would be constructed for each sentence, yielding a so-
called universal parser [Tho94]. Deterministic bottom-up parsers encountered
in practice, however, may produce at most a single parse tree for any given
input. Furthermore, operations can no longer be undertaken simultaneously;
the automaton must perform a single shift or reduce, possibly after consulting
lookahead obtained from the input stream. This necessitates that a suitable
restriction be placed on allowable input grammars, as discussed in the next
section.

4 Deterministic Subsets of CFGs and OCFGs:
LR(k), LALR(k), LRP(k) and LALRP(k)

In order to use bottom-up parsing algorithms, we will need to restrict our
choice of input grammars to subsets capable of being handled by a DPDA with
fixed-length lookahead. Ideally, such a restriction would encompass exactly the
grammars describing deterministic context-free languages (DCFLs). However,
since the determinism of a context-free language is not decidable, neither can
be the properties of any grammar describing such a language. Fortunately, one
can define subsets of such grammars, corresponding to subsets of DCFLs, whose
boundaries are known. For any grammar G contained in these subsets, one can
then construct a DPDA capable of unambiguously recognizing all sentences in
L(G). The LR(k) subset of CFGs is actually capable of describing all of the
DCFLs; in fact, LR(1) is sufficient for the task [Knu65, AU72], although an
appropriate LR(1) grammar for a DCFL may be difficult to obtain (see Section
1). To formally define the LR(k) subset, we rely on the NPDA constructed in
the previous section.

Definition 11. Let G = (VN , VT , S, P ) be a CFG per Definition 1. We say
that G ∈ LR(k), for k ≥ 0, if and only if for any two states α, β in the NPDA
for G, the conditions

(1) [A−→µ1 • η1 |w1] ∈ Ik
α;
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(2) [B−→µ2 • η2 |w2] ∈ Ik
β ;

(3) Ik
α = Ik

β ; and
(4) [A−→µ1 • η1 |w1] 6= [B−→µ2 • η2 |w2]

jointly imply that FIRSTk(η1w1) ∩ FIRSTk(η2w2) = ∅.

The LALR(k) subset of LR(k) is obtained by merging the states of the
LR(k) DPDA until it becomes an LR(0) DPDA, but nevertheless employs k-
tuples of lookahead to resolve action conflicts. Compared with LR(k) grammars,
LALR(k) grammars have significantly reduced storage requirements, while in-
curring only a slight loss of expressivity. Note that our use of an NPDA prevents
us from actually having to specify the process of merging of lookaheads that is
necessary during DPDA construction. (Traditionally, researchers have found it
difficult to elegantly define LALR(k) grammars [DP82].) The brevity obtained
in Definitions 12 and 14 that follow is possible due to our use of a nondetermin-
istic automaton as the hypothetical parser engine.

Definition 12. Let G = (VN , VT , S, P ) be a CFG per Definition 1. We say that
G ∈ LALR(k), for k ≥ 0, if and only if for any two states α, β in the NPDA for
G, the conditions

(1) [A−→µ1 • η1 |w1] ∈ Ik
α;

(2) [B−→µ2 • η2 |w2] ∈ Ik
β ;

(3) I0
α = I0

β ; and
(4) [A−→µ1 • η1 |w1] 6= [B−→µ2 • η2 |w2]

jointly imply that FIRSTk(η1w1) ∩ FIRSTk(η2w2) = ∅.

Having provided alternative definitions for the well-known LR(k) and LA-
LR(k) subclasses of CFGs, we are now ready to define analogous subclasses
of LRP(k) (“LR(k) with Precedence”) and LALRP(k) (“LALR(k) with Prece-
dence”) for ordered context-free grammars. The definitions for LRP(k) and
LALRP(k) that follow are almost identical to those for LR(k) and LALR(k),
except that each NPDA state P Iα is now viewed as a partial order of items
rather than an unordered set. As one may expect, this additional ordering of
items may make it “harder” for any two states P Ik

α and P Ik
β , k ≥ 0 to be

deemed equivalent, and hence foldable into the same DPDA state. A determin-
istic parser constructed for an OCFG may therefore contain more states than
one for a corresponding core CFG. In practice, it is somewhat difficult to find an
OCFG G for which the number of DPDA states is greater than for CORE(G);
Section 7 elaborates on this matter further.

Definition 13. Let G = (VN , VT , S, P ) be an OCFG per Definition 3. We say
that G ∈ LRP(k), for k ≥ 0, if and only if for any two states α, β in the NPDA
for G, the conditions

(1) [A−→µ1 • η1 : a |w1] ∈ P Ik
α;

(2) [B−→µ2 • η2 : b |w2] ∈ P Ik
β ;

(3) P Ik
α = P Ik

β ; and
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(4) [A−→µ1 • η1 : a |w1] 6= [B−→µ2 • η2 : b |w2]

jointly imply that FIRSTk(η1w1) ∩ FIRSTk(η2w2) = ∅.

Definition 14. Let G = (VN , VT , S, P ) be an OCFG per Definition 3. We say
that G ∈ LALRP(k), for k ≥ 0, if and only if for any two states α, β in the
NPDA for G, the conditions

(1) [A−→µ1 • η1 : a |w1] ∈ P Ik
α;

(2) [B−→µ2 • η2 : b |w2] ∈ P Ik
β ;

(3) P I0
α = P I0

β ; and
(4) [A−→µ1 • η1 : a |w1] 6= [B−→µ2 • η2 : b |w2]

jointly imply that FIRSTk(η1w1) ∩ FIRSTk(η2w2) = ∅.

Interestingly, even though a grammar G ∈ LRP(k), this does not neces-
sarily mean that CORE(G) ∈ LR(k)! Recall that the allowable derivations in
an OCFG must be a subset of those in a CFG (see Definition 5); many CFG
derivations do not respect the appropriate invariants for associativity and prece-
dence, and are pruned from the set. A lesser number of possible derivations for
a sentence translates into fewer conflicts during deterministic parsing of that
sentence. Conversely, a core grammar G′ = CORE(G) may contain shift-reduce
and/or reduce-reduce conflicts even if the original OCFG G does not so that,
in fact, G′ 6∈ LR(k). The same argument can easily be made for for LALRP(k)
and LALR(k) grammars; one of the strengths of the Bertha parser generator,
discussed in Section 6, lies in its ability to construct LALRP(1) parsers for
grammars that are not in LALR(1).

5 Parser Construction for LRP(k) and LA-
LRP(k) Grammars

In the previous section, we have presented axiomatic definitions for LR(k),
LRP(k), LALR(k) and LALRP(k) grammars, phrased in terms of an abstract
NDPA. As concise as these definitions are, they fall somewhat short in guiding
the design and construction of actual parsers for these grammars. Deterministic
parsing algorithms for LR(k) and LALR(k), especially when k = 1, have been
a subject of extensive research in the past and we will not analyze them here.
Instead, we shall outline the parser construction techniques for LRP(k) and LA-
LRP(k) grammars on the assumption that the reader is already familiar with
the corresponding LR(1) and LALR(1) techniques. In what follows, we infor-
mally outline the phases that the parser construction algorithm should consist
of. These phases were chosen to allow for a separation of concerns within the
algorithm, and to make it as understandable as possible. Clearly, the objectives
of our exposition may conflict with the objective of parsing efficiency, a topic
which has successfully been addressed elsewhere [Pag77, DP82, Spe88, BL89].
An actual implementation of the LALRP(k) parser construction algorithm (for
k = 1) may be found in the BerthaTM tool, discussed in Section 6 below.
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Obviously, the parser construction process for any of the grammars discussed
in Section 4 does not involve the actual creation of an entire NPDA and its
subsequent reduction to a DPDA, since the number of distinct NPDA states can
potentially be infinite. Each NPDA state Ik

α or P Ik
α, as it is computed, is instead

immediately folded into an appropriate DPDA state Ik
β or P Ik

β , respectively,
per equivalence criterion (3) in Definitions 11, 12, 13 or 14. During the folding
operation, the set of items comprising the NPDA state is merged into the set of
items in the DPDA state: Ik

β ← Ik
β ∪ Ik

α or P Ik
β ← P Ik

β ∪P Ik
α. For LALR(k) or

LALRP(k) grammars, this may actually enlarge |Ik
β | or |P Ik

β | due to differing
lookaheads.

If no appropriate Ik
β or P Ik

β DPDA state exists, one is simply created from
Ik

α or P Ik
α. After this is done, all applicable shift transitions out of this new

state are computed as well. All shift actions correspond to either a valid k-
tuple on the input stream which needs to be read in, or to a k-tuple of symbols
found on the top of the parse stack. In any event, we need not consider the
reduction actions at this phase of parser construction, since they cannot lead
to new DPDA states. At the same time, shift actions per se cannot lead to
conflicts during our transition computation.

Once the DPDA state closure is complete, we may compute the reduce tran-
sitions that are applicable in each state. It is only during this computation
that shift-reduce and reduce-reduce conflicts may arise. In the case of LR(k),
LALR(k) or some other subset of CFGs, such conflicts cannot be resolved, as
no ordering of any kind exists among CFG items in each state. Instead, the
conflicts must be eliminated altogether through a rewriting of the grammar (or
the use of ad hoc directives allowable by tools such as yacc or bison). But for
OCFG subsets such as LRP(k) or LALRP(k), the OCFG items in each state do
possess an ordering (see Definition 8), reflecting the ordering of their underlying
OCFG derivations. When confronted with a conflict, we simply choose the ac-
tion which corresponds to applying the OCFG item with the higher precedence.
Furthermore, some of the OCFG items may not need to be consulted at all,
since their inclusion would lead to an invalid derivation tree costruction.

Should a shift-reduce conflict involve two OCFG items with equal prece-
dence, we check if the associativity vectors of the corresponding productions
allow us to consistently exclude one of the actions when constructing a valid de-
rivation. As an example, consider a subset of the grammar depicted in Figure 1
containing only productions p1 = [E−→E“*”E : 10] and p2 = [E−→E“/”E :
00], where p1 =

P
p2. Of the different states in the resulting LALRP(1) DPDA

for this grammar, two are of interest here. The first, which we shall label S1,
contains the partial order

[E−→E“*”E• : 10 | {“∗′′, “/′′}] =
rm P

[E • −→E“*”E : 10 | {“∗′′, “/′′}]
=

rm P
[E • −→E“/”E : 10 | {“∗′′, “/′′}]
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of OCFG items. The second, labeled S2, contains items

[E−→E“/”E• : 10 | {“∗′′, “/′′}] =
rm P

[E • −→E“*”E : 10 | {“∗′′, “/′′}]
=

rm P
[E • −→E“/”E : 10 | {“∗′′, “/′′}],

again arranged into a partial order. Because all the items in S1 and S2 have
identical precedence, the shift-reduce conflicts present in both states cannot be
resolved using precedence alone. We therefore consult the associativity vectors
for p1 and p2 in the hope of finding a possible resolution.

First, observe that p1 is left-associative; thus, while in S1, if faced with a
choice of reducing using p1 or shifting using p1 (as indicated by a lookahead
of “*”), we should clearly reduce. However, if the lookahead is “/”, then the
shift operation will involve p2 rather than p1. We can no longer reduce with p1

at this point; had we done so, the resulting sentential form would need to be
subsequently reduced with p2, which is not possible since p2 is non-associative
(see Definition 5). We also cannot shift out of S1 using p2; doing this would
eventually lead to a reduction into the rightmost E in p1, violating the left-
associativity of p1. Hence, the proper action on lookahead “/” in state S1 is to
signal an associativity error.21 Similar reasoning is applied when determining
plausible transitions out of S2. Given a lookahead of “*”, we reduce the stack
using p2, yielding the leftmost occurrence of E in p1. If the lookahead is “/”,
we again signal an associativity error condition. Although we succeeded in
eliminating all of the shift-reduce conflicts in this example, this need not be
true in the general case. For example, a directional DPDA parser cannot resolve
shift-reduce conflicts when neither production is left- or right-associative (i.e.,
when both a1 and a2 are of the form 0m1rc(A,ω)−m−n0n, for some m ≥ 1 and
n ≥ 1), unless unbounded lookahead is permitted.22

In all cases — LR(k), LALR(k), LRP(k) or LALRP(k) — the foregoing
procedure will yield a bottom-up parser capable of deciding if an input sentence
is enumerated by the corresponding grammar. An OCFG parser may have
more states than a corresponding CFG parser; since OCFG states are partial
orders (see Section 4 above), several distinct orderings of the same set of OCFG
items may well map to a single CFG state. At the same time, LR(k) and LR-
P(k) parsers will usually have more states than their LALR(k) and LALRP(k)
counterparts — the latter always rely on an LR(0) automaton — although
the number of additional states can be kept to a minimum using algorithms
presented in [Pag77, Spe88]. Generally, the resulting parsers — whether table-
driven or code-driven — will be slightly larger for OCFGs than for CFGs. Not
only may the total number of states in OCFG parsers be greater, but improved
conflict resolution may lead to a greater number of encoded actions within each
state as well. The increase in size should properly be viewed as a consequence of

21Associativity errors differ from shift-reduce conflicts in that neither action (as opposed
to both) is valid in this state. The bison and yacc tools also make this distinction, whereas
Berkeley yacc (byacc) does not.

22Presumably, non-directional parsing methods such as CYK [GJ98] could be used instead,
though this has not been formally investigated.
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increased recognition power, and not as a drawback of LRP(k) and LALRP(k)
parser construction techniques.

6 The BerthaTM Parser Generator

Bertha is a parser generator for LALRP(1) grammars. It relies extensively on
the JavaTM [GJS96] programming language — not only for its implementation,
but also for the syntax, structure and semantics of acceptable input grammars.
The Bertha input language is merely a simple extension of Java that introduces
additional keywords such as prec, symbol and reduce, among a few others. The
advantage of extending an existing source language in this way, aside from an
obviously simplified learning curve, is that one can easily leverage many of the
language’s desirable properties. In the case of Bertha, all grammar specifications
are properly encapsulated and completely type-safe. The fact that the input
language is based on Java also greatly simplifies the generation of the output
— which, not surprisingly, is a Java program itself.

Figure 2 contains the source code for a grammar specification — complete
with semantic actions — processable by the Bertha parser generator. This
specification corresponds to the grammar shown in Figure 1. By convention,
each Bertha input file must possess the extension .bertha, and its base name
must be identical to that of the outermost start symbol (E in our case) contained
in it. The .java output file created by Bertha will also share this base name.
It should be fairly obvious that the start symbol E shown in Figure 2 is very
similar to an ordinary Java class; in fact, each Bertha symbol is converted to
a class when the output file is written.

The remaining symbols are also implemented as classes, and are nested in-
side the start symbols of their respective grammars. They may also be nested
inside of each other. In this way, every symbol may access attributes and meth-
ods defined in all enclosing symbols — including the start symbol — and hence
facilitate the use of inherited attributes. This can be seen in Figure 2, where
the reduce() routine of the num symbol is directly accessing the val field of
the E symbol. (Bertha and Java will both ensure that an outer symbol exists
before any inner symbol is instantiated in its scope.) It is important to note that
traditional bottom-up parsers cannot support inherited attributes as it is not
known which production is in the process of being completed; the availability
of inherited attributes in Bertha-generated parsers must therefore come at the
expense of the overall expressivity of the grammar. In such cases, inner non-
terminals (such as symbol num shown in Figure 2) may be referenced only by
productions defined in the scope of the enclosing symbol. Indeed, it is possible
to devise grammars that are essentially top-down in nature, and which expose
the attributes of all enclosing symbols during the parse process.

All Bertha symbols are nonterminals, and must have one or more produc-
tions, in the form of reduce(...) methods, defined. Terminal symbols are not
declared explicitly; rather, they occur as anonymous literals and regular expres-
sions and are passed to their respective reduce(...) methods as Java Strings.
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// E.bertha
import zll.bertha2.run.ParseError;
start symbol E {

// the program processes what is on the command line
public static void main(String args[]) {

E calc = new E(new java.io.StringReader(ArgString(args)));
calc.Parse(); System.out.println("The result is " + calc.val);

}
int val = 0; // attribute for nonterminal E
symbol num { // nested terminal symbol

reduce((’0’-’9’)+ str) {
val = Integer.decode(str);

}
}
// back to the scope of E
prec(incomparable) {

reduce(num) { /* no need to do more! */ }
prec(decreasing) {

prec(equal) {
assoc("0") reduce("-", E s) { val = - s.val; }
assoc(none) reduce("+", E s) { val = + s.val; }

}
assoc("01") reduce(E base, "^", E exponent) {

val = (int)Math.pow(base.val, exponent.val);
}
prec(equal) {

assoc(left) reduce(E op1, "*", E op2) { val = op1.val * op2.val; }
assoc(none) reduce(E op1, "/", E op2) { val = op1.val / op2.val; }

}
prec(equal) {

assoc("10") reduce(E op1, "+", E op2) { val = op1.val + op2.val; }
assoc("00") reduce(E op1, "-", E op2) { val = op1.val - op2.val; }

}
assoc(right) reduce(E op1, ":", E op2, "?", E op3) {

val = (op1.val != 0? op2val: op3val);
}

}
assoc(full) reduce("(", E op, ")") { val = op.val; }

}
}

Figure 2: A sample Bertha grammar specification (E.bertha) for the OCFG
depicted in Figure 1
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For example, symbol num in Figure 2 above relies on a string parameter str,
constructed by matching input stream characters against the regular expression
(0́´9́)́+. This approach greatly simplifies the integration of lexical analysis with
parsing, and obviates the necessity of using separate lexical analyzers such as
lex or flex.

Nonterminal symbols usually define reduce(...) methods via an enclos-
ing prec(...) construct specifying the precedence ordering of the produc-
tions contained within it. For example, to specify a linear order of increasing
or decreasing precedences, the reduce(...) methods must be placed inside
a prec(increasing) or prec(decreasing) scope, respectively. Similarly, to
specify a precedence equivalence class for a group of productions, one should
surround the corresponding methods with a prec(equal) construct. Finally, a
lack of an ordering relation among several productions may be indicated by plac-
ing them inside of a prec(incomparable) scope. In some cases, it is possible
for prec(...) constructs to be nested,23 as Figure 2 illustrates. It is possible
for a symbol not to use prec(...) at all, which is semantically equivalent to
using prec(incomparable).

Each reduce(...) method definition may be preceded by an assoc(...)
clause. If omitted in the source, this clause is assumed to be assoc(full),
thus making the corresponding production fully associative. In addition to
full, production associativites may be specified as left, right, none or as a
Boolean vector (entered as a string literal) described in Definition 3. For non-
recursive productions (i.e., where rc(A,ω) = 0), the assoc(...) clause has
no valid semantics and may not be specified. Note that if neither prec(...)
nor assoc(...) are used, the resulting Bertha grammar is an ordinary CFG
without any notion of ordering.

Although Figure 2 does not show it, it is also possible for a start symbol to
have another start symbol — corresponding to a separate grammar — nested
within it. In such a situation, both grammars share the underlying parser
engine as well as the input stream. A sub-parse using the nested grammar is
performed whenever the outer grammar is about to retrieve a terminal symbol,
whether by shifting or lookahead, from the input. A typical application of
nested grammars is in the construction of parsers for programming languages,
where the outer grammar describes the actual language constructs while the
inner grammar lays out the structure of comments and other white space. No
longer limited by a finite-state acceptor such as that found in lex or flex, one
can easily parse nested comments and extract comment-embedded content such
as javadoc [GJS96] documentation.

Also not shown is the fact that all symbols are free to inherit fields and
methods from other Java classes. This inheritance behavior is rather easy to
implement as a consequence of using an object-oriented language as the basis
for Bertha, and can be used to factor out similarities among various constructs.
For example, the nonterminals int_expr, real_expr and bool_expr in some

23Note that it is not possible to nest prec(increasing), prec(decreasing) or
prec(incomparable) scopes inside a prec(equal) construct — doing so would violate the
partial order invariants.
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[S−→A : Λ] [A−→C : Λ] [C −→ “A” : Λ]

[S−→ “!” B : Λ] [A−→D : Λ] [C −→ “B” : Λ]

[B−→D : Λ] [D−→ “B” : Λ]

[B−→C : Λ] [D−→ “A” : Λ]

Figure 3: A contrived OCFG requiring additional DPDA states

hypothetical language can all inherit common characteristics from an expr base
class. More generally, the consistent use of classes in conjunction with the type-
safety of Java implies that the parsers constructed by Bertha are themselves
type-safe. Java inner classes provide a convenient closure mechanism through
which further encapsulation and separation of concerns may be achieved. Both
type-safety and encapsulation are essential for the construction of reliable soft-
ware systems, yet are missing from popular parser generators such as bison and
yacc.

7 Conclusions and Future Work

In this paper, we have presented a new, ordered variant of context-free gram-
mars capable along with the means to generate the context-free languages they
describe and to construct parsers for them. As an initial work, the paper con-
sisted mostly of definitions; theoretical results pertaining to OCFGs, LRP(k)
and LALRP(k) are yet to be obtained. In particular, it would be interesting to
obtain a tight upper bound on the number of distinct DPDA states in a parser
constructed for an LRP(k) or LALRP(k) grammar. On the one hand, it seems
reasonable to assume that the number of states may be greater than those ob-
tained for a corresponding core LR(k) or LALR(k) grammar, since there may
exist multiple states containing the same items whose ordering differs. How-
ever, in the course of constructing Bertha grammars for various programming
languages, we have almost never encountered such a situation.

A very contrived LALRP(1) grammar which does require two additional
states beyond those of an LR(0) automaton is shown in Figure 3. After scanning
in token ‘‘A’’, the parser must choose whether to reduce it to a C or a D. This,
however, depends on whether the C or D is to be derived from an A or a B. If an
A is being derived, then ‘‘A’’ should clearly be reduced to a C, as [A−→C : Λ]
has higher precedence than [A−→D : Λ]. Conversely, if a B is being derived,
then one must reduce the ‘‘A’’ to a D since [B−→D : Λ]>

P
[B−→C : Λ].

Clearly, two distinct states, rather than one, must exist for reducing ‘‘A’’; the
same holds true for token ‘‘B’’.

On the whole, then, it may be possible that on average, the number of states
for a shift-reduce parser for an OCFG only barely exceeds that for the corre-
sponding core CFG, even if the theoretical upper bound is less than promising.
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This issue remains to be investigated. Of course, given the increased expressivity
afforded by ordered context-free grammars, any additional states may construe
an acceptable cost. There exists an analogy between creating such states in an
LALRP(k) parser generator and the splitting of inadequate states 24 when con-
structing parsers for grammars that fail to be in LALR(k). In both cases, the
underlying LR(0) automaton proves insufficient. It may therefore be advanta-
geous to leverage both techniques in a single system. Bertha, when augmented
with state-splitting or state-merging algorithms presented in [Spe88, Pag77],
could become a full-fledged LR(1)/LRP(1) parser generator, but without the
state explosion usually associated with LR(1) parsers. In addition, any remain-
ing inadequate states could be equipped with syntactic predicates [Tar82] to
that choose the appropriate action. Making such enhancements could become
reasonable if the LALRP(1) formalism proves insufficiently expressive in prac-
tice.

The existence of nested symbols in Bertha grammars may provide another
opportunity for future improvements. Because all inner symbols have limited
visibility and scope, additional context information may be inferred when these
symbols are created. For example, since any enclosing symbols will eventually
be instantiated, Bertha performs this instantiation “ahead of time” (i.e., with
respect to traditional bottom-up parsing) and hence allows inherited as well
as synthesized attributes to be used.25 To the extent that we are able to de-
duce which productions (items) will need to be completed, we may be able to
incorporate left-corner parsing techniques [RL70, Hor93] into the Bertha run-
time system. Generally speaking, a left-corner parser proceeds in a bottom-up
fashion until it can determine a unique production, or a unique set of nested
productions, which must be completed next. If such production or productions
are found, they are parsed in a top-down manner.

Undoubtedly, many other improvements to Bertha, and perhaps even the
ordered context-free grammar formalism itself, are possible. Most likely, the
exact nature of such changes will come to light only after extensive use of OCFGs
in real-life software construction scenarios.
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